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Preface

This text provides the fundamental concepts and mathematical basis for spacecraft
attitude determination and control. It is intended to serve as both a textbook
for undergraduate and graduate students and a reference guide for practicing
professionals. A primary motivation of this text is to develop the theory of attitude
determination from first principles to practical algorithms, because very few of the
existing texts on spacecraft control treat spacecraft attitude determination in depth.
We emphasize specific applications; so the reader can understand how the derived
theory is applied to actual orbiting spacecraft. We also highlight some simplified
analytical expressions that can serve as first cut analyses for more detailed studies
and are especially important in the initial design phase of a spacecraft attitude
determination and control system. For example, Sect. 6.3 shows a simple single-
axis analysis that is widely used by spacecraft engineers to design actual attitude
estimation hardware and software configurations and to predict their performance.
Analyses of this type can also help to determine whether anomalous behavior
encountered by an orbiting spacecraft is due to a hardware problem, a control
system design error, or a programming error, and to find a path to resolving the
anomaly. In writing this book the authors hope to make a significant contribution
toward expediting the process most newcomers must go through in assimilating and
applying attitude determination and control theory.

Chapter 1 provides an introduction to the concepts presented in the text. It serves
to motivate the reader by giving a historical review of the subject matter, including
discussions of several actual missions that cover a broad spectrum of attitude
determination and control designs. It also provides examples of how an inadequate
theoretical analysis can cause a failure to meet mission objectives or, even worse,
loss of a mission. Some examples of creative strategies to recover from potential
mission failures are also presented. Chapter 2 begins with a review of linear algebra
and moves on to the basic ideas of spacecraft attitude studies: reference frames,
transformations between reference frames, and alternative representations of these
transformations. Chapter 3 provides detailed derivations of attitude kinematics and
dynamics, including a treatment of the torques acting on spacecraft. Chapter 4
provides the mathematical models behind the most common types of spacecraft
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sensors and actuators. Actual hardware specifications of these sensors and actuators
are not given because the rapid development of this technology would quickly
render them obsolete. Chapter 5 is a detailed treatment of attitude determination
methods that do not depend on a retained memory of past observations. The most
famous method in this category, the solution of Wahba’s problem, is introduced,
accompanied by several algorithms for solving it and a rigorous statistical analysis
of its estimation errors. Chapter 6 covers attitude determination methods that
mitigate the effects of sensor errors by incorporating dynamic models into a filtering
process to retain a memory of past observations. Here the focus is on Kalman
filtering, including both calibration and mission mode filters. Chapter 7 shows the
fundamentals of attitude control, including some recent theoretical advancements
on the effects of noise on the control system design.

This book is the product of many years of experience possessed by the authors
working on actual spacecraft attitude determination and control designs for numer-
ous missions. Several actual mission examples are presented throughout the text to
help the reader bridge the gap between theory and practice. For example, Sect. 5.8
presents an attitude determination algorithm that is employed onboard the Tropical
Rainfall Measuring Mission (TRMM) as of this writing. Most of the mission
examples in this text provide representative examples of typical mission mode
designs. However, the authors wish to also show how the theory presented in the text
can be applied to nonstandard mission modes derived from unique requirements.
Section 7.7 presents the specific example of the range of mission modes actually
used in the attitude determination and control system of the Solar, Anomalous, and
Magnetospheric Particle Explorer (SAMPEX), each mode responding to its own
unique challenges. Section 6.4.5 presents experimental magnetometer calibration
results from the Transition Region and Coronal Explorer (TRACE) to give the reader
a taste of how algorithm designs perform with real data. All of the examples are
based on a “ground up” approach, i.e., starting with the fundamentals and leading
towards an actual onboard algorithm.

As stated previously, this text can be used for an undergraduate course in
spacecraft dynamics and controls. The second author has taught a senior level course
in this area for many years, which is split into two parts: (1) orbital dynamics
and (2) attitude kinematics and dynamics. Chapter 10 provides the material that
is used for the orbital dynamics portion of the course. Chapters 2 and 3 provide the
necessary material for the attitude kinematics and dynamics portion of the course.

Chapter 8 gives a list of quaternion identities, many of which have not appeared
in open literature. Chapter 9 presents the explicit equations for the attitude matrices
and kinematic equations for all 12 Euler angle representations of the attitude.
Chapter 10 gives an overview of orbital dynamics to provide the background
required to understand several topics in the text, such as the local-vertical/local-
horizontal frame in Sect. 2.6.4. Chapter 11 provides a summary of environment
models, which is crucial to understanding their effect on spacecraft translational
and rotational motion. Chapter 12 reviews the theoretical basis of general control
and estimation in enough detail to refresh the reader’s memory of the concepts that
underlie the applications in the text.
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Material for a graduate level course can include a brief review of orbital dynamics
from Chapter 10 followed by the environmental models shown in Chapter 11.
Chapters 5 and 6 can provide the bulk of a graduate course covering attitude
determination and estimation. Chapter 7 can also be used in the graduate course to
provide an introduction to attitude control. The authors believe that the entire book
can serve as a reference or refresher for practitioners, which provides the primary
motivation for including Chap. 4 in the text.

To encourage student learning we have incorporated both analytical and
computer-based problems at the end of each chapter. This promotes working
problems from first principles. General computer software and coded scripts have
deliberately not been included with this text. Instead, a website with computer
programs for all the examples shown in the text can be accessed by the reader

subject, we feel that they may hinder rigorous theoretical studies that are required
to properly comprehend the material. Therefore, we strongly encourage students to
program their own computer routines, using the codes provided from the website
for verification purposes only.

We are indebted to numerous colleagues and students for contributions to various
aspects of this work. In particular, we wish to express our gratitude to Mark Psiaki
and especially to John Junkins for encouraging us to write this book. Many students
have provided excellent insights and recommendations to enhance the pedagogical
value, as well as developing new problems that are used as exercises. Although
there are far too many students to name individually here, our sincere appreciation
goes out to them. We do wish to acknowledge the significant contributions on the
subject matter to the following individuals: Christopher Nebelecky for providing the
section on the disturbing forces in Sect. 10.3, Agamemnon Crassidis for providing
inputs on the sliding mode control in Sect. 12.2.3, John Downing for suggesting the
dodecahedral wheel configuration in Sect. 4.8.3, and Sam Placanica for providing
Fig. 4.16. Our heartfelt thanks to the following individuals for proofreading the text:
Michael Andrle, J. Russell Carpenter, Yang Cheng, Joanna Hinks, Alice Liu, Adonis
Pimienta-Peñalver, Steve Queen, Matthias Schmid, and Matthew Whittaker. We also
wish to thank the following individuals for their many discussions and insights
throughout the development of this book: K. Terry Alfriend, Roberto Alonso, Penina
Axelrad, Itzhack Bar-Itzhack, Frank Bauer, J. Russell Carpenter, Yang Cheng,
Daniel Choukroun, Neil Dennehy, Adam Fosbury, Michael Griffin, Christopher
Hall, Joanna Hinks, Henry Hoffman, Kathleen Howell, Johnny Hurtado, Moriba
Jah, Jer-Nan Juang, N. Jeremy Kasdin, Ken Lebsock, E. Glenn Lightsey, Richard
Linares, Michael Lisano, Alice Liu, Manoranjan Majji, D. Joseph Mook, Daniele
Mortari, Jim O’Donnell, Yaakov Oshman, Mark Pittelkau, Steve Queen, Reid
Reynolds, Hanspeter Schaub, Conrad Schiff, Malcolm Shuster, Tarun Singh, Puneet
Singla, Eric Stoneking, Sergei Tanygin, Julie Thienel, Panagiotis Tsiotras, James
Turner, S. Rao Vadali, James Wertz, Bong Wie, and Renato Zanetti. Also, many
thanks are due to several people at Springer, including our editor Maury Solomon,
our assistant editor Nora Rawn, and Harry (J.J.) Blom. Finally, our deepest and
most sincere appreciation must be expressed to our families for their patience and

(see Appendix). Although computer routines can provide some insights into the
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understanding throughout the years while we prepared this text. This text was
produced using LATEX 2"(thanks Yaakov and HP!). Any corrections are welcome
via email to Landis.Markley@nasa.gov or johnc@buffalo.edu.

Greenbelt, MD, USA F. Landis Markley
Amherst, NY, USA John L. Crassidis
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Chapter 1
Introduction

Spacecraft attitude determination and control covers the entire range of techniques
for determining the orientation of a spacecraft and then controlling it so that the
spacecraft points in some desired direction. The attitude estimation and attitude
control problems are coupled, but they can be considered separately to some extent.
The separation theorem for linear systems shown in Sect. 12.3.9 tells us that the
control system can be designed without considering the estimator and vice versa.
Specifically, the feedback gains in the control system can be chosen assuming that
the system’s state is perfectly known. No general separation theorem exists for
nonlinear systems, including spacecraft attitude control systems, but the pointing
requirements for most space missions have been satisfied by designing the attitude
determination and control systems separately.

It is sometimes useful to distinguish between attitude determination and attitude
estimation, although this distinction is often blurred. Attitude determination in this
strict sense refers to memoryless approaches that determine the attitude point-by-
point in time, quite often without taking the statistical properties of the attitude
measurements into account. Attitude estimation, on the other hand, refers to
approaches with memory, i.e. those that use a dynamic model of the spacecraft’s
motion in a filter that retains information from a series of measurements taken over
time.

Malcolm Shuster made the incisive observation that attitude estimation is the
youngest of the four quadrants of astronautics shown in Table 1.1, which is
adapted from his work [33]. The table shows the attitude estimation quadrant
to be actually empty before the launch of Sputnik, the first artificial satellite, in
1957. As Shuster pointed out,“There were, apparently no eighteenth- or nineteenth-
century contributors to attitude estimation of even modest calibre,” because “there
was simply no great problem in Attitude Estimation waiting to be solved.” The field
of attitude estimation actually remained in a very underdeveloped state even into the

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__1,
© Springer Science+Business Media New York 2014
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2 1 Introduction

Table 1.1 Founders of
astronautics

Dynamics Estimation

Orbit Newton (1642–1727) Kepler (1571–1630
Lagrange (1736–1813) Lagrange (1736–1813)
Hamilton (1805–1865) Gauss (1777–1855)
Einstein (1874–1955)

Attitude Euler (1707–1783) (gone fishin’)
Cayley (1821–1895)

late 1970s, although hundreds of spacecraft missions existed by that time, starting
with Sputnik and including the Apollo missions from the late 1960s to the early
1970s.

A natural question is: “With all these missions why didn’t attitude estimation
become important until the late 1970s?” The answer does not necessarily lie in
the absence of mathematical developments, as one might expect. Harold Black
had developed the algebraic method for the point-by-point determination of a
spacecraft’s attitude from a set of two vector observations in 1964 [4, 24]. Shuster
later renamed this algorithm TRIAD [35], the name stemming from an IBM Federal
Systems Division internal report called “Tri-Axial Attitude Determination System.”
One year after Black’s breakthrough, Grace Wahba published her famous attitude
determination problem involving any number of vector observations [40]; but the
first solutions of this problem never found practical application [13]. The first
practical algorithm was Paul Davenport’s celebrated q method, which solved for the
quaternion parameterizing the attitude [24]. Unfortunately, this algorithm required
performing an eigenvalue/eigenvector decomposition of a 4�4 matrix. It was used
to support NASA’s High Energy Astronomy Observatories (HEAO 1–3) [10], but
was not practical for most missions on even the mainframe computers of the
1970s [34]. Shuster developed his QUaternion ESTimator (QUEST), which did not
require an eigenvalue/eigenvector decomposition, to meet the greater throughput
demands of the Magsat mission, launched in late 1979 [35]. Many other practical
solutions to Wahba’s problem have been developed since that time, but QUEST was
the first algorithm suited to onboard computer processors and is still the most widely
employed [27].

James Farrell published the first known paper using a Kalman filter for attitude
estimation in 1970 [12], but a constant-gain filter had been proposed earlier [21],
and Kalman filters for attitude estimation had appeared previously in contractor
reports [11] and conference reports [30, 39]. Kalman filters were employed during
the late 1970s and early 1980s to both filter noisy measurements and estimate for
the attitude and gyro biases. The spacecraft dynamics and measurement models
are nonlinear, though, so the filter is actually a quasi-linear extended Kalman filter
(EKF, see Sect. 12.3.7.2), which does not possess the guaranteed convergence that
the linear Kalman filter has. The EKF provides higher accuracy attitude estimates
than point-by-point methods, but it is more expensive computationally, and the
threat of divergence made attitude control engineers initially slow to adopt it. Farrell
used the Euler angle attitude parameterization [12], but implementations using
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the quaternion parameterization had gained prominence by the mid 1970s [29].
A survey paper on quaternion-based attitude EKFs appeared in 1982, bringing more
attention to that approach [23]. However, a conventional Kalman filter using the
quaternion parameterization results in a covariance matrix that is nearly singular.1

This could cause problems, especially with single-precision computers, but they
were overcome by using a local unconstrained three-dimensional parameterization
for the attitude error and the quaternion for the global parameterization of the
attitude.

Reference [42] provides an excellent summary of the state of the art in 1978,
but most of the attitude estimation processing described in this reference was
performed by large mainframe computers on the ground. Algorithms for performing
attitude determination and estimation existed well before that time, but space-
hardened computer processors with the power required to execute them onboard
spacecraft were not available. This raises the question: “How did spacecraft control
their attitude without having attitude estimates?” Some early spacecraft, such
as Sputnik and the Echo 1 and 2 satellites (mylar balloons 30 and 40 m in
diameter), were spheres with no pointing requirements at all. Other spacecraft used
passive stabilization methods: spacecraft spin or a momentum wheel providing a
constant angular momentum bias and/or gravity-gradient stabilization (see Chap. 3).
Infrequent control torques to be applied by active mechanisms were computed on
the ground and telemetered to the spacecraft. Other spacecraft with active control
systems derived their control commands directly from sensor data, using simple
analog circuitry.

Most modern-day spacecraft missions have specific pointing requirements,
otherwise known as pointing modes. Some examples include Earth pointing, inertial
pointing, and Sun pointing. Communications and broadcast satellites are a special
case of Earth-pointing spacecraft. They are typically placed in geostationary orbits
along the equator, with an orbital period equal to the Earth’s rotational period
(i.e. one sidereal day), so they appear from the ground to be stationary in the
sky. Their angular momentum vectors are perpendicular to the equator and their
attitude rotation rates are also the same as the Earth’s rate, keeping their antennas
constantly pointed at the Earth. This explains why a satellite TV dish can be pointed
to a fixed location for reception purposes. An example of an inertially pointing
spacecraft is the Hubble Space Telescope (HST), which can point its main mirror
to a fixed location in the sky for several hours to collect enough faint light to
provide a good image. An example of a Sun pointing spacecraft is the Solar &
Heliospheric Observatory (SOHO) which is used to study the Sun from its deep
core to the outer corona and the solar wind. Sometimes the pointing mode changes
during the spacecraft mission. This may be due to changing requirements or failure

1Reference [23] states that the covariance matrix is exactly singular, but this would only result
from a linear constraint, while the quaternion norm constraint is quadratic. Itzhack Bar-Itzhack
and Jeremy Kasdin pointed this out to the authors in personal discussions.
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Fig. 1.1 Factors affecting ACS selection

of some hardware component. The Solar, Anomalous and Magnetospheric Particle
Explorer (SAMPEX) discussed in Sect. 7.7 provides an example of changing
pointing algorithms to meet changing pointing requirements.

A spacecraft’s overall pointing error is a function of both the attitude determina-
tion/estimation errors and control errors, because the control system takes its inputs
from the attitude determination/estimation system. As an example consider the non-
realistic case where the control errors are exactly zero. If the attitude determination
errors are 2ı, then the overall pointing errors are also 2ı even though the control is
perfect. Therefore, when considering the overall pointing design requirements both
the control errors and attitude determination/estimation errors must be taken into
account. Pointing requirements can include requirements for both holding a desired
orientation and for maneuvering the spacecraft from one orientation to another. The
desired orientation may be a static resting point or a time varying trajectory. The
trajectory itself may be predefined specifically, such as pointing towards a particular
location on the ground from low-Earth orbit (LEO), or not specifically defined, such
as a general spin that scans the universe. The Wilkinson Microwave Anisotropy
Probe (WMAP) spacecraft spent 9 years performing a repetitive “spirograph” scan
of the celestial sphere, as described in Sect. 7.3.

Reference [36] provides an excellent overview of the factors that affect an
attitude control system (ACS) configuration, as shown in Fig. 1.1. Some of these
factors are obvious, such as the payload, cost and desired accuracy, but others take
much longer to quantify. More often than not the stabilization requirements may
involve multiple pointing modes of the spacecraft. For example, the mission mode
is the primary mode to complete the mission objectives. In addition to this mode
a safehold mode is usually required to cope with an anomaly. An example of
this mode is a Sun pointing mode that holds the solar arrays to face the Sun
and removes power from all non-critical subsystems, minimizing power demands
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Fig. 1.2 LADEE modular common spacecraft bus architecture

until the anomaly is resolved. The spacecraft’s inertia properties and the expected
disturbance torques must be accounted for during the ACS design process. The
configuration of the vehicle may impose design constraints on the ACS in the form
of system budgets for weight, power and volume. This leads to various definitions
for the configuration. For example, a CubeSat has a volume of exactly one liter
and has a mass of no more than 1.33 kg. Current designs focus on commercial
off-the-shelf (COTS) technology, which is a federal acquisition regulation term
defining a non-developmental item of supply that is both commercial and sold in
substantial quantities in the commercial marketplace. The Lunar Atmosphere and
Dust Environment Explorer (LADEE) satellite uses a modular common spacecraft
bus architecture along with COTS components, as shown in Fig. 1.2, in order to
significantly reduce costs. These types of designs will certainly be prevalent for
many future missions.

Although reducing costs is important, it is equally important that a proper ACS
achieves its stated objective throughout the lifetime of the mission. This begins with
a complete understanding of the theory behind an ACS. Most often the particular
mission objectives drive the requirements. Engineers are usually given the objectives
and then they must develop a proper ACS that meets these objectives, keeping all
the factors shown in Fig. 1.1 in mind. But sometimes engineers are able to drive
the objectives. An example of this is an experience that this book’s authors had
for the contingency mode for the Tropical Rainfall Measuring Mission (TRMM)
spacecraft. The scientists asked the authors “Roughly what attitude accuracy do
you think can be achieved with three-axis magnetometer and Sun sensors?” After
a simple analysis we responded that 0.7ı should be doable. The very next day the
official requirement from the scientists for the contingency mode was stated to be
0.7ı! The authors and other engineers then performed a detailed analysis to prove
that this requirement could be met [6]. Other times one system is more important
than another system. This is the case for the Wilkinson Microwave Anisotropy
Probe (WMAP) spacecraft [25], which is used to make fundamental cosmological
measurements. The ACS objectives are to provide a complete scan of the universe
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twice a year. The scientists were more interested in the attitude knowledge than
WMAP’s actual orientation. Therefore, the control system did not need to be as
accurate as the attitude estimation system, which involved a star tracker and gyros.
This allowed for a less sophisticated control design than would be required for a fine
pointing spacecraft.

It is important to note that other requirements may be imposed on the overall
pointing mode. For example, nearly every spacecraft uses solar arrays for power
generation, and the arrays must be pointed towards the Sun well enough to
provide sufficient power. This may require that the desired pointing mode be
slightly modified during mission operations. Other spacecraft require calibration
maneuvers to determine sensor biases and other calibration parameters. These
attitude maneuvers typically require that the spacecraft be capable of controlling
all three of its axes, which is often broadly termed three-axis stabilization.

The history of attitude determination/estimation has been well documented, but
the history of attitude control is less known. This is in part due to the fact that this
field of study was classified Secret in the early days of spacecraft mission designs.
Robert Roberson [32] claims that its birth year is 1952, with the first publicly
published works by him and Vladimir Beletskii, who was in the USSR, appearing
in the mid 1950s. Early designs were based on linearized equations of motion to
study the behavior of the control system. Active control relies on only a handful
of available actuators: (1) momentum exchange devices such as reaction wheels,
(2) thrusters and (3) magnetic torquers. As early as 1961 magnetic torquers had
been proposed both for momentum dumping and active pointing control. According
to Roberson, the first Orbiting Solar Observatory (OSO 1) was the first known
controlled spacecraft. This used a dual-spin design, with a rotating wheel to provide
gyroscopic stability, and a sail driven electrically against the wheel’s rotation to
point at the Sun. Although modern-day actuators have not changed from their initial
purpose, technology has advanced greatly since the early days to provide much
greater efficiency and tighter pointing performance. For example, in order to take
images of distant, faint objects, HST must point extremely stably and accurately.
The telescope is able to lock onto a target without deviating more than 7/1000th of
an arcsecond, or the width of a human hair seen at a distance of about 1.5 km. Fine
guidance sensors looking through HST’s main optics are used to provide the attitude
knowledge while reaction wheels provide the necessary control. These reaction
wheels must be very accurately balanced and isolated so that vibration is as small
as possible; otherwise a jitter effect would ensue causing image blurring.

Spacecraft attitude control methods fall into two broad classes: passive control
and active control. Passive control methods use the natural spacecraft dynamics
to satisfy their pointing requirements. The simplest of these is spin stabilization,
which depends on the fact that the direction of a rigid spinning body’s angular
momentum is relatively immune to disturbances (see Sect. 3.3.3). The Pioneer series
of spacecraft provides a good example of early spinners. Pioneer 10 and 11 each
carried a sensor called the Imaging Photopolarimeter (IPP), as shown in Fig. 1.3,
which measured the strength of sunlight scattered from the clouds of Jupiter [31].
It then converted this information into digital format of different shades of red
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Fig. 1.3 Pioneer imaging photopolarimeter

and blue that made up each image of Jupiter. The telescope axis was swept about
the spacecraft spin axis through 360ı in the look angle as the spacecraft rotated
at its nominal spin rate. It could also be positioned in discrete 0.5 mrad steps of
cone angle over a range from 29ı from the earthward direction (limited by the
spacecraft antenna structure) to 170ı from earthward. This allowed two-dimensional
mapping of the celestial sphere in any one of three distinct operational modes. The
total angle coverage per spin rotation depended on the spacecraft data transmission
rate; during encounter it was limited to 70ı and 14ı (28ı at low sample rate) for
photopolarimetry and imaging, respectively. Any swath of the 360ı rotation could
be covered by selecting the starting angle. In the faint light mode the entire roll was
covered.

As shown by the example of Pioneer, one advantage of spinning spacecraft is that
the spin can be used by ACS and payload sensors to scan targets. A disadvantage, of
course, is that a spinning platform is very inconvenient for sensors or antennas that
need to point at fixed targets. Dual-spin spacecraft have both a spinning component
and a despun platform that is not rotating. The dual-spin configuration has mainly
been used for communications or broadcast satellites, where the despun platform
contains an antenna pointed at a receiving station on the Earth, but it was also used
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for OSO 1 and for the Galileo interplanetary spacecraft, which was launched toward
Jupiter in October 1989. Dual-spin spacecraft are intermediate between passive and
active control, because the pointing of the spin axis is largely passive, but the angle
of rotation of the despun platform about the spin axis is controlled actively by the
motor driving the relative rotation of the two components.

A momentum-bias attitude control system is conceptually similar to a dual-spin
system, but the angular momentum bias is provided by a spinning wheel or
wheels internal to the main spacecraft body, which is not spinning. Many Earth-
pointing spacecraft have used this configuration, with the momentum bias along the
spacecraft pitch axis, which is perpendicular to the orbital plane. Spacecraft pitch
motion is controlled by the wheel torque and the motion about the other two axes can
be controlled by magnetic torques or propulsive torques. Another common variation
is to have two wheels slightly misaligned from the pitch axis so that torquing them
in the same direction provides pitch control and commanding them in opposite
directions provides a torque perpendicular to the pitch axis.

Gravity-gradient torques provide another passive method to keep one axis of
an Earth-orbiting spacecraft pointed toward the Earth, as was first demonstrated
on the Transit Research and Attitude Control (TRAAC) spacecraft, launched in
1962 [45]. Since this provides no control about the Earth-pointing axis, it is usually
combined with some other form of control, a pitch momentum bias in the case of
the Geostationary Experimental Ocean Satellite (GEOS) [42] or magnetic torquing
in the case of the Ørsted satellite [44].

As pointing requirements have become more demanding and spacecraft
computers have become more capable, spacecraft ACS designs have largely
moved to three-axis stabilization. Most actively-controlled spacecraft use thrusters,
reaction wheels or, less frequently, control moment gyros (CMGs) as their primary
controllers. Thrusters by their nature use expendable propellants, limiting the life
of a mission. Reaction wheels or CMGs, on the other hand, require only electrical
power that can be supplied by solar arrays. They also are well suited for repointing
and absorbing periodic disturbance torques, which cause no long-term change in
their stored angular momentum. Secular disturbances, on the other hand, lead to
momentum buildup in the wheels, which must be unloaded (or “dumped”) using
external torques provided by attitude thrusters or magnetic torquers. Magnetic
torquers are preferable because they do not use expendables and are less disruptive
to the spacecraft’s primary function, but they are generally only employed in LEO.

The Geostationary Operational Environmental Satellites (GOES), which supply
the weather pictures seen on televised weather programs, provide an excellent
example of the evolution of attitude control system designs. The first three of
these satellites, GOES 1–3,2 were spin-stabilized. Weather images were obtained
by a Visible Infrared Spin Scan Radiometer (VISSR) which used the satellite spin
to scan in the East-West direction, and a mirror stepped once per spin period to

2NASA satellites are given letter designations before launch and numerical designations after they
attain orbit, so the first three GOES satellites were also known as GOES A-C.



1 Introduction 9

Trim Tab

Imager
and

Sounder

Solar Sail

Solar Array

Fig. 1.4 Geostationary
operational environmental
satellite I–M

scan North to South. GOES 4–7 were dual-spin satellites, with high-gain antennas
on the despun platform to increase the speed of data transmission to the Earth.
One drawback of these designs was that the VISSR spent only a very small
fraction of its spin period actually scanning the Earth. In order to increase the
time spent actually gathering weather imagery, the GOES 8–12 satellites, depicted
in Fig. 1.4, were designed as momentum-biased three-axis controlled spacecraft,
with the scan provided by the science instruments [37]. These were the imager,
which senses infrared and visible energy from the Earth’s surface and atmosphere,
and the sounder, which provides data for vertical atmospheric temperature and
moisture profiles, surface and cloud top temperature, and ozone distribution. The
main disturbance at geosynchronous altitudes is the torque caused by solar radiation
pressure on solar arrays, so geosynchronous spacecraft usually have two solar arrays
on opposite sides to balance the torque. The imager and sounder need a cold
field of view for their radiators, so GOES could not have balanced solar arrays.
A small solar sail on an extended boom was provided to balance the solar torque,
but the combination of imperfect symmetry, center of mass shifts, and changing
surface optical properties resulted in a seasonally-varying net torque. The resulting
accumulated momentum was unloaded by thrusters or by magnetic torquing, the
latter with mixed success at geosynchronous altitude. A trim tab at the end of the
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solar array was adjusted daily by ground command to minimize the need for active
momentum dumping [17]. Each spacecraft had a set of gyros, the Digital Integration
Rate Assembly (DIRA), but it was not used for the mission mode ACS because the
gyros had an operational lifetime of only 2,000 h.

The pointing requirement for this series of GOES satellites was 12 �rad relative
to an Earth referenced system, which translates to roughly 4 km knowledge on
the ground. It is important to note that this was the tightest pointing requirement
ever for a spacecraft that did not use data from its main instruments to aid the
ACS, as HST and other fine-pointing spacecraft do. The original ACS designers
believed that this requirement could be met using a horizon sensor only and by
making corrections through ground processing of the data [20]. Unfortunately, the
requirements were not met on orbit with this approach, so a NASA team investigated
ACS modifications needed to improve the performance of the next generation of
GOES spacecraft [8, 26]. The present authors concluded that the desired level
of performance required star trackers and gyros capable of providing continuous
data in a stellar-inertial ACS, which had been used for Earth-pointing spacecraft
in near-Earth orbit at least since Landsat 4 in 1982, but never to our knowledge
for a geostationary satellite. However, star trackers provide an attitude relative to
an inertial frame, and converting the attitude to an Earth reference frame requires
knowledge of the spacecraft orbit,3 so orbit errors will contribute to pointing errors.
This is the reason why Earth-pointing spacecraft have historically used horizon
sensors as pointing references. Fortunately, it is not difficult to reduce orbit errors
to the point where they do not significantly degrade pointing performance, so the
stellar-inertial design could meet the pointing requirements.

Reference [26] had been presented at the 1991 AIAA Guidance, Navigation,
and Control Conference, and it was well known to the spacecraft manufacturers
interested in building the next generation of GOES spacecraft. Thus it is no
surprise that later GOES satellites starting with GOES 13 have used many of the
improvements suggested in that paper, including a stellar-inertial ACS mode [38].
Increased cooling demands of the imager and sounder precluded the use of a solar
sail on these spacecraft, so they must perform daily momentum dumps, but the
improved performance of the ACS allows them to continue imaging during the
dumps and to meet all their performance requirements [15].

The design of the TRMM ACS involved a similar decision between an Earth-
referenced concept and a stellar-inertial concept. TRMM was developed at Goddard
Space Flight Center concurrently with the Rossi X-Ray Timing Explorer (RXTE),
and an effort was made to use common hardware and software wherever feasible.
RXTE was an astronomical mission, and its stringent pointing stability requirement
of 30 arcsec led it to incorporate a stellar-inertial ACS [3]. The TRMM engineers
decided not to use a stellar-inertial system, because their much less stringent
attitude knowledge requirement of 0.18ı per axis could be met by using pitch
and roll measurements from an Earth Sensor Assembly (ESA), and obtaining yaw

3This is discussed in Sects. 2.6.4 and 5.7.
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knowledge from gyros updated twice each orbit by Sun sensor measurements.
Although this decision was controversial, it was supported by the first author of this
book on the principle that an Earth-pointing mission should use an Earth-referenced
ACS. It appeared to be an unfortunate decision in early 1994, after development
of the TRMM ACS was well underway, when ACS engineers became aware of a
progressive degradation of similar ESAs on the Defense Meteorological Satellite
Program (DMSP) spacecraft. They considered adding a star tracker to TRMM
to protect against this possibility, but avoided the severe monetary and schedule
penalties that this would entail by developing a contingency mode using gyros and
magnetometers, based on results that had been obtained in ground-based attitude
determination of the Upper Atmosphere Research Satellite (UARS) using flight gyro
and magnetometer data [18].

Implementation of TRMM’s contingency mode required an onboard filter to
reduce the effects of sensor noise and magnetic field modeling errors. The common
hardware procurement with RXTE spacecraft provided gyros that were much more
accurate than required by the ESA-based TRMM ACS but provided the dynamic
memory needed by the filter. It was not clear that the onboard processor could
handle the computational load of a full Kalman filter in addition to the existing
ACS software, so the authors of this book conducted a study to develop algorithms
that could provide near-optimal attitude estimates with a lower computational load
[6]. Our investigation showed that one eigenvalue of the covariance matrix of
attitude errors was much larger than the other two, and its eigenvector was within
2.5ı of the Sun vector. This reflects the fact that the more accurate Sun sensor
cannot reduce the attitude error along the Sun line, which must be estimated using
the less-accurate magnetometer. A simplified expression for the covariance using
this analysis provided several alternate algorithms that obtained nearly the same
accuracy as the Kalman filter at a fraction of the computational load [6].

It was determined, however, that the already-validated RXTE Kalman filter,
modified to use magnetometer and Sun sensor data in place of star tracker data,
would fit in the TRMM computer, so this alternative was chosen. In August of
2001 TRMM’s orbit altitude was raised from 350 to 402 km to save propellant
used to compensate for atmospheric drag. The ESA had performed well at the lower
altitudes for which it was designed, but it ceased providing valid data above 380 km,
and the contingency mode Kalman filter was enabled. It has since provided attitude
accuracies of approximately 0:2ı, about the same as the ESA had provided and
much better than the allotted attitude knowledge accuracy for the contingency mode
of 0.7ı per axis [1].

In addition to difficulties in meeting requirements, as on GOES 8–12, it is not
uncommon to experience an outright failure. Some of these are not recoverable,
but ingenious workarounds can often be found. The Lewis spacecraft provides an
example of an unrecoverable failure. The Lewis design engineers adopted a Sun-
pointing ACS safehold mode that had been designed for the Total Ozone Mapping
Spectrometer-Earth Probe (TOMS-EP) spacecraft. Unfortunately, the spacecraft
axis that the Lewis safehold mode pointed at the Sun was an unstable axis
of intermediate inertia (see Sect. 3.3.3), unlike the stable Sun-pointing axis on
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TOMS-EP. This instability should have revealed itself in simulations performed
during the design phase, but the simulations assumed perfectly aligned and balanced
thrusters. When Lewis entered safehold mode on orbit, a small thruster imbalance
caused the spacecraft to spin up around the unstable intermediate axis. This rotation
could not be sensed by the Sun sensors, and the spin momentum started to transfer
into the controlled principal axis causing the thrusters to fire excessively in an
attempt to maintain control. But the ACS processor was programmed to shut down
the control system if excessive firings occurred. The spin momentum then was
transferred to the principal axis, which rotated the spacecraft 90ı, causing the solar
arrays to be pointed nearly edge-on to the Sun, resulting in a fatal loss of power
from which Lewis could not recover.

The Solar Maximum Mission (SMM) provides an example of a recovery from a
potentially fatal malfunction. Launched in February 1970, SMM was the first of the
Multimission Modular Spacecraft (MMS) with independent modules designed to
be replaceable on orbit [9, 16]. SMM’s Modular Attitude Control System (MACS)
functioned flawlessly for the first nine months after launch, but then fuse failures
permanently disabled three of its four reaction wheels, which were the primary ACS
actuators. With only one wheel operational, the experiment axis would drift away
from the Sun and severe thermal and power problems would develop. Engineers at
Goddard Space Flight Center developed an algorithm to spin-stabilize SMM, which
was uplinked to the onboard computer less than six weeks after the loss of the first
wheel [19]. A successful spinup was achieved, leaving the spacecraft rotating at
about 1 deg/s and pointing near the Sun in a thermal- and power-safe state. Three
of the seven observatory experiments continued to operate while spinning to return
solar constant measurements as well as data on gamma ray and x-ray emissions
from the Sun. SMM remained in the spin-stabilized mode until it was captured in
1984 by Space Shuttle Challenger and its MACS module was replaced in the first
repair of an orbiting spacecraft.

Another rescue from a potentially fatal malfunction was performed on the
International Ultraviolet Explorer (IUE), which was launched in January 1978 into
a geosynchronous, but not geostationary, orbit. Because of its high altitude, IUE
could not be serviced on orbit. It was equipped with six gyros, of which three were
needed for the ACS. Three of the gyros had failed by July 1982, so a replacement
two-gyro control algorithm was developed in 1982–1983 to permit continued use
of the observatory in the anticipated loss of a fourth gyro [14]. This algorithm
was ready for operation by Spring 1983, well before the fourth gyro failed on
August 17, 1985. IUE continued science operations until it was decommissioned
for non-ACS reasons in September 1996, 18 years and 9 months after launch,
although it was built to last for 3 years with a goal of 5 years. A single-gyro control
algorithm for IUE was developed and fully tested on orbit, but it was never needed.
Their rescues of SMM, IUE, and several other spacecraft earned the engineers in
Henry Hoffman’s Guidance and Control Branch at Goddard Space Flight Center the
appellation “Satellite Saviors” [22].
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HST, deployed by Space Shuttle Discovery in April 1990, is the only telescope
designed to be serviced on orbit by astronauts. Like IUE, HST was launched with
six primary high-accuracy single-degree-of-freedom gyros for redundancy. In fact,
the gyros are of the same basic design as IUE’s, but they were improved to avoid
the IUE’s failure mode. Unfortunately, they experienced a different failure mode.
If four of the six primary gyros were lost, vehicle health and safety could still be
maintained by using a set of backup lower-accuracy gyros until the primary gyros
could be brought on line, after replacement if necessary. The backup gyros have
a limited operational life, however, so they should not be relied on for long-term
control. Therefore, when two of HST’s primary gyros failed during the first year
of HST operation, it was felt prudent to develop a zero-gyro sunpoint (ZGSP)
safehold mode [28]. Development of this safehold mode algorithm, which uses
magnetometer and coarse Sun sensor data, went from concept to flight code in three
months, with uplink to HST on January 20, 1992, and it maintained HST in a power
and thermally safe state for 38 consecutive days between the failure of a fourth gyro
in November 1999 and a December servicing mission to replace all six gyros.

Our final example of an ACS design using minimal hardware is provided by
the Solar Radiation and Climate Experiment (SORCE) spacecraft [2]. The SORCE
engineers developed a gyroless ACS design out of necessity after much of the
ACS flight software had already been coded, when problems arose with their gyro
procurement and no alternate gyros could be procured quickly that met spacecraft
interface and resource requirements. Facing a very tight schedule, the ACS team
designed and implemented a simple science mode that took advantage of the
availability of two star trackers and a fine Sun sensor to derive accurate rates,
and a safehold mode deriving rates from magnetometer and coarse Sun sensor
measurements. The key system feature enabling the simplicity of these modes was
that the science instrument was designed to point at the Sun and therefore could
not be damaged by Sun exposure. Reference [5] provides an overview of gyroless
pointing modes on several scientific spacecraft, including SORCE.

A sound theoretical foundation is the first and foremost step to achieve a good
ACS design. The Lewis issue could have been easily avoided by a simple analysis
that would have showed that the safehold mode had a spin about its intermediate
axis. Understanding how orbit errors couple with attitude errors in the GOES star
tracker design is another example of using theory to aid in the ACS analysis.
The TRMM contingency filter, described above, also provides an illustrative case.
A classic example is the roll/yaw coupling effect used to control communications
satellites (see Sect. 3.3.8), which typically employ a horizon sensor for the ACS.
A horizon sensor can provide only roll and pitch information, leaving the yaw
rotation angle about the nadir vector unknown and the attitude not fully observable.
However, roll/yaw coupling causes an error in yaw to become an error in roll a
quarter orbit later, so yaw is controllable even though it is not observable. The yaw
pointing accuracy is typically about an order of magnitude worse than roll and pitch,
but this is of no concern for most communications satellites because their antennas
are still pointed toward the Earth to meet their requirements.
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Since the first publications on attitude control this area has been extremely
active, producing a vast stream of theoretically-based publications that continues
to this day. It is impossible to even begin to scratch the surface of the extensive
developments in this area. Rather, we shall highlight some key aspects of the
results shown in classic publications. The attitude control problem can be essentially
broken down into two parts: (1) attitude regulation and (2) attitude tracking.
Regulation drives the attitude toward a fixed orientation and keeps it there. Note that
this is exactly the same as an inertial pointing mode. Tracking involves continuously
re-orientating the attitude to follow some predefined attitude motion profile. This
falls under the category of three-axis stabilization. Control techniques fall under
both open-loop and closed-loop approaches, as is further discussed in Sect. 7.1.

As with estimation the parameterization of choice for control purposes is the
quaternion. Bong Wie and Peter Barba produced one of the earliest works using this
parameterization for the regularization problem in 1985 [43]. This work derives
simple feedback laws that are essentially equivalent to classical proportional-
derivative controllers and shows them to be stable through a Lyapunov analysis.
Note that Wie and Barba did not prove asymptotic stability, but fortunately their
control laws do lead to an asymptotically stable closed-loop system as shown in
Sect. 7.2. The extension of this work to the tracking case is derived by John Wen and
Kenneth Kreutz-Delgado [41]. Control theory has continued to evolve since the time
of these classic papers, including robust control approaches, control methods that
take into account actuation constraints, controllers that can work when an actuator
fails (such as the two-wheel control problem), as well as many others that can be
found in the open literature.

Many of the techniques described in this text have been extensively employed for
many years, but the field continues to grow. Advances in attitude estimation include
a number of nonlinear filtering algorithms developed since the survey paper of 1982
[23], many of which are critically reviewed in a more recent survey paper [7]. The
most important theoretical tool that has significantly advanced the mathematics
underlying attitude control is the use of Lyapunov-based methods to design
controllers that guarantee stability for general nonlinear systems.4 Although the
potential advantages of the new control and estimation algorithms are undeniable,
it is wise to apply the old adage “If it ain’t broke don’t fix it” to the simple but
effective control laws and the standard extended Kalman filter, which have proved
their worth on a multitude of spacecraft missions. Ultimately, enhanced confidence
in the new approaches, coupled with the more stringent pointing requirements of
future missions, will bring about more widespread use of these approaches, or of
others as yet undiscovered, for spacecraft attitude determination and control.

4A review of Lyapunov stability is presented in Sect. 12.2.2.
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Chapter 2
Matrices, Vectors, Frames, Transforms

This chapter begins with an overview of matrices and vectors, which are used
extensively in attitude analysis. We assume that the reader has some familiarity
with this material, so the account is not completely self-contained. The principal
objective of this section is to define our notation and conventions.

We next discuss a special category of four-component vectors, which we refer to
as quaternions although they differ conceptionally from the quaternions introduced
by W. R. Hamilton in 1844. They perform the same function as Hamilton’s
quaternions in applications, however, and have proved to be extremely useful in
attitude analysis.

We then move on to a discussion of rotations in three-dimensional space and
the most common parameter sets that have been used to specify these rotations: the
Euler axis and angle, the rotation vector, the quaternion, the Rodrigues parameters,
the modified Rodrigues parameters, and the Euler angles. The last section in this
chapter addresses the representation of attitude errors. A more extensive treatment of
the material in this section, including historical references, can be found in Shuster’s
comprehensive review article [17].

2.1 Matrices

An m � n matrix A is an array with m rows and n columns of scalars:

A D

2
6664

a11 a12 � � � a1n
a21 a22 � � � a2n
:::

:::
: : :

:::

am1 am2 � � � amn

3
7775 (2.1)

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
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We will assume that the scalar matrix elements are real numbers. The results in
this chapter can be generalized to matrices with complex elements, but we will
rarely need to deal with complex matrices. If m D n, then the matrix A is square.
We denote anm�nmatrix with all components equal to zero by 0m�n, or sometimes
simply by 0 if confusion is unlikely to result.

A column vector, or sometimes simply a vector, is an n � 1 matrix

x D

2
6664

x1
x2
:::

xn

3
7775 (2.2)

We denote an n-component vector with all components equal to zero by 0n, or
sometimes simply by 0 if confusion is unlikely.

Matrices can be added, subtracted, or multiplied. For addition and subtraction,
all matrices must have the same number of rows and columns. The elements of

C D A˙ B (2.3)

are given by cij D aij ˙ bij . Matrix addition and subtraction are both commutative,
A˙B D B˙A, and associative, .A˙B/˙C D A˙ .B˙C/. The multiplication
of two matrices A and B:

C D AB (2.4)

is valid only when the number of columns of A is equal to the number of rows of B
(i.e. A and B must be conformable). The resulting matrix C will have rows equal to
the number of rows of A and columns equal to the number of columns of B . Thus,
if A has dimension m � n and B has dimension n � p, then C will have dimension
m � p. The elements of C are given by

cij D
nX

kD1
aikbkj (2.5)

for all i D 1; 2; : : : ; m and j D 1; 2; : : : ; p. Matrix multiplication is associative,
A .B C/ D .AB/C , and distributive, A .B C C/ D AB C AC , but not
commutative in general, AB ¤ B A. In those cases for which AB D B A, the
matrices A and B are said to commute.

The transpose of a matrix, denoted AT , has rows that are the columns of A and
columns that are the rows of A. The transpose of the matrix defined by Eq. (2.1), for
example, is
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AT D

2
6664

a11 a21 � � � am1
a12 a22 � � � am2
:::

:::
: : :

:::

a1n a2n � � � amn

3
7775 (2.6)

The transpose of a column vector is a row vector. The transpose operator has the
following properties:

.˛A/T D ˛AT ; where ˛ is a scalar (2.7a)

.AC B/T D AT C BT (2.7b)

.AB/T D BTAT (2.7c)

If A D AT , then A is a symmetric matrix, if A D �AT , then A is a skew symmetric
matrix.

A diagonal matrix is a square matrix with nonzero elements only on the main
diagonal and all other elements equal to zero. An n � n diagonal matrix can be
formed from an n-component row or column vector by

diag.x/ D diag.xT / D diag.Œx1 x2 � � � xn�/ �

2
6664

x1 0 � � � 0
0 x2 � � � 0
:::
:::
: : :

:::

0 0 � � � xn

3
7775 (2.8)

An important special case of a diagonal matrix is the identity matrix:

I � diag.Œ1 1 � � � 1�/ (2.9)

It has the property that I A D A and B I D B if the matrices are conformable.
We sometimes denote the n � n identity matrix by In if supplying the subscript
helps to remove ambiguity.

An upper triangular matrix is a matrix in which all the entries below the main
diagonal are zero, i.e. aij D 0 for i < j . A lower triangular matrix has all zeros
above the main diagonal, i.e. aij D 0 for i > j .

Two useful scalar quantities can be defined for square matrices, the trace and
the determinant. The trace of an n � n matrix is simply the sum of the diagonal
elements:

trA D
nX
iD1

ai i (2.10)
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Some useful identities involving the matrix trace are given by

tr.˛A/ D ˛ trA (2.11a)

tr.AC B/ D trAC trB (2.11b)

tr.AB C/ D tr.B C A/ D tr.C AB/ (2.11c)

tr.AB/ D tr.B A/ (2.11d)

tr.x yT / D xT y (2.11e)

tr.A y xT / D xT A y (2.11f)

Equation (2.11d)–(2.11f) are special cases of Eq. (2.11c), which shows the cyclic
invariance of the trace. The operation y xT is known as the outer product (note that
y xT ¤ x yT in general).

The determinant of an n � n matrix can be computed using an expansion about
any row i or any column j :

detA D
nX

kD1
.�1/iCkaikmik D

nX
kD1
.�1/kCj akjmkj (2.12)

where mij is the minor, which is the determinant of the .n � 1/ � .n � 1/
matrix resulting from deleting row i and column j of A. Some useful determinant
identities are

det I D 1 (2.13a)

detAT D detA (2.13b)

det.AB/ D detA detB (2.13c)

det.˛ A/ D ˛n detA (2.13d)

The elements of the adjoint matrix adjA are defined in terms of the minors:

ŒadjA�ij D .�1/iCjmji (2.14)

Note the reversed order of the subscripts on the left and right side of this equation.
It can be shown that [21]

A.adjA/ D .adjA/A D .detA/I (2.15)

Thus we see that a nonsingular matrix, which is a square matrix with a nonzero
determinant, has an inverse

A�1 D adjA

detA
(2.16)
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that satisfies the identities

A�1A D AA�1 D I (2.17a)

.AT /�1 D .A�1/T � A�T (2.17b)

If A and B are n � n matrices, then the matrix product AB is nonsingular if and
only if A and B are nonsingular. If these conditions are met, then

.AB/�1 D B�1A�1 (2.18)

2.2 Vectors

The dot product, inner product, or scalar product of two vectors of equal dimension,
n � 1, is given by

x � y � xT y D yT x D
nX
iD1

xiyi (2.19)

If the dot product is zero, then the vectors are said to be orthogonal. A measure of
the length of a vector is given by its Euclidean norm, which is the square root of the
inner product of the vector with itself:

kxk � px � x D
"

nX
iD1

x2i

#1=2
(2.20)

It is easily seen that k˛ xk D j˛j kxk. The norm obeys the inequality

kxk � 0 (2.21)

with equality only for x D 0.
A vector with norm equal to unity is said to be a unit vector. Any nonzero vector

can be made into a unit vector by dividing it by its norm:

xunit � x
kxk (2.22)

This is referred to as normalizing the vector x.
Figure 2.1a shows two vectors, x and y, and the orthogonal projection of a vector

y onto a vector x. The orthogonal projection of y onto x ¤ 0 is given by
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y

p

x

y−p

Orthogonal Projection

y

x

y−x

θ

Angle between Two Vectors

a b

Fig. 2.1 Depiction of an orthogonal projection (a) and of the angle between two vectors (b)

p D x � y
kxk2 x (2.23)

This projection yields .y � p/ � x D 0. From Eqs. (2.21) and (2.23) we see that

0 � k.y � p/k2 D kyk2 � .x � y/
2

kxk2 (2.24)

This yields the Cauchy-Schwarz inequality:

jx � yj � kxk kyk (2.25)

The Cauchy-Schwarz inequality implies the triangle inequality

kxC yk � kxk C kyk (2.26)

and it allows us to define the angle � between the vectors x and y by

cos � D x � y
kxk kyk (2.27)

This angle is illustrated in Fig. 2.1b, as is the vector difference y � x.

2.3 Jacobian, Gradient, and Hessian

In this section we will introduce notation for partial derivatives with respect to
components of a vector x. If y.x/ is an m-component vector function of an
n-component vector x, we define the Jacobian matrix as the m � n matrix
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@y.x/
@x
�

2
6666666666666664

@y1

@x1

@y1

@x2
� � � @y1

@xn

@y2

@x1

@y2

@x2
� � � @y2

@xn

:::
:::

: : :
:::

@ym

@x1

@ym

@x2
� � � @ym

@xn

3
7777777777777775

(2.28)

In particular, if we have a scalar f .x/ in place of the vector function y.x/, this
reduces to the m � 1 row vector

@f .x/
@x
�
�
@f

@x1

@f

@x2
: : :

@f

@xn

�
(2.29)

The transpose of this, a 1 �m column vector, is known as the gradient of f .x/:

r xf .x/ �
�
@f .x/
@x

�T
� @f .x/

@xT
(2.30)

The Hessian is the n � n symmetric matrix of second-order partial derivatives
of f .x/:

@2f .x/
@x @xT

�

2
6666666666666664

@2f

@x1@x1

@2f

@x1@x2
� � � @2f

@x1@xn

@2f

@x2@x1

@2f

@x2@x2
� � � @2f

@x2@xn

:::
:::

: : :
:::

@2f

@xn@x1

@2f

@xn@x2
� � � @2f

@xn@xn

3
7777777777777775

(2.31)

Some use the term Hessian to refer to the determinant of the Hessian matrix. The
Laplacian is the trace of the Hessian matrix:

r2xf .x/ �
nX
iD1

@2f

@x2i
D tr

�
@2f .x/
@x @xT

�
(2.32)
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2.4 Orthonormal Bases, Change of Basis

An orthonormal set of vectors is a set with inner products obeying

xi � xj D ıij (2.33)

where the Kronecker delta ıij is defined as

ıij D
(
0 if i ¤ j
1 if i D j (2.34)

If the number of vectors in the set is equal to the dimension of the vectors, then the
set is said to constitute an orthonormal basis. We will generally denote basis vectors
(and some other unit vectors) by the letter e. The orthonormal basis

e1 D

2
6664

1

0
:::

0

3
7775 ; e2 D

2
6664

0

1
:::

0

3
7775 ; : : : ; en D

2
6664

0

0
:::

1

3
7775 (2.35)

is called the natural basis. Any vector x can be written as a linear superposition of
basis vectors; using the natural basis gives

x D

2
6664

x1
x2
:::

xn

3
7775 D

nX
jD1

xj ej (2.36)

An orthonormal set of basis vectors defines a reference frame. Let us refer to the
frame defined by e1; e2; : : : ; en as frame F ; and consider another frame F 0 defined
by the orthonormal basis: e0

1; e0
2; : : : ; e0

n. We can express the vector x in either basis

x D
nX

jD1
xj ej D

nX
kD1

x0
ke0
k (2.37)

Taking the dot product of this equation with ej or e0
k gives

xj D ej � x D
nX

kD1
.ej � e0

k/x
0
k (2.38a)

x0
k D e0

k � x D
nX

jD1
.e0
k � ej /xj (2.38b)



2.4 Orthonormal Bases, Change of Basis 25

Substituting the first equality of Eq. (2.38a) into the first equality of Eq. (2.37) gives

x D
nX

jD1
ej .eTj x/ D

0
@

nX
jD1

ej eTj

1
A x (2.39)

It follows that the identity matrix can be expressed in terms of any orthonormal
basis by

In D
nX
iD1

eieTi (2.40)

When considering transformations among different reference frames, it is very
useful (almost indispensable, in fact) to regard x as an abstract vector having an
existence in n-dimensional space independent of any particular reference frame, and
having representations xF in reference frame F and xF 0 in frame F 0. Subscripts
will be provided when it is important to indicate the reference frame explicitly
or to carefully distinguish between abstract vectors and their representations, but
subscripts will often be omitted when confusion is unlikely to arise. Arraying the
components of x in the reference frames F and F 0 as column vectors gives the
representations

xF D

2
6664

x1
x2
:::

xn

3
7775 D

2
6664

e1 � x
e2 � x
:::

en � x

3
7775 and xF 0 D

2
6664

x0
1

x0
2
:::

x0
n

3
7775 D

2
6664

e0
1 � x

e0
2 � x
:::

e0
n � x

3
7775 (2.41)

Equation (2.38) can be used to express the relations between xF and xF 0 as matrix
products:

xF D DFF 0xF 0 (2.42a)

xF 0 D DF 0F xF (2.42b)

where

DFF 0 D

2
6664

e1 � e0
1 e1 � e0

2 � � � e1 � e0
n

e2 � e0
1 e2 � e0

2 � � � e2 � e0
n

:::
:::

: : :
:::

en � e0
1 en � e0

2 � � � en � e0
n

3
7775 (2.43a)

DF 0F D

2
6664

e0
1 � e1 e0

1 � e2 � � � e0
1 � en

e0
2 � e1 e0

2 � e2 � � � e0
2 � en

:::
:::

: : :
:::

e0
n � e1 e0

n � e2 � � � e0
n � en

3
7775 (2.43b)
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The matrices DFF 0 and DF 0F are known as direction cosine matrices (DCMs)
because their elements are the cosines of the angles between the basis vectors in the
two reference frames. These transformation equations hold for any two orthonormal
bases. We see immediately that

DF 0F D DT
FF 0 (2.44)

which means that the matrix transforming vector representations from frame F to
frame F 0 is the transpose of the matrix transforming from F 0 to F . Another way of
stating the content of Eq. (2.43) is that the columns of DFF 0 are the representations
in frame F of the basis vectors of frame F 0 and vice versa:

DFF 0 D �e0
1F e0

2F � � � e0
nF

�
(2.45a)

DF 0F D
�
e1F 0 e2F 0 � � � enF 0

�
(2.45b)

We emphasize that the transformations considered here are transformations of
the representations of a fixed abstract vector resulting from a change in the reference
frame. This is the passive interpretation of a transformation, also known as the
alias sense (from the Latin word for “otherwise,” in the sense of “otherwise known
as”) [17]. The alternative active interpretation (also known as the alibi sense from
the Latin word for “elsewhere”) considers the representation in a fixed reference
frame of an abstract vector that is rotated from x to x0. The difference between these
two interpretations is illustrated in Fig. 2.2a–c. Figure 2.2a shows the components
x1 and x2 of the vector x in frame F . Figure 2.2b shows the components x0

1 and
x0
2 of x in the rotated frame F 0, illustrating the alias sense. Figure 2.2c shows the

components x0
1 and x0

2 of a rotated vector x0 in the unrotated frame F , illustrating the
alibi sense. In this example, the values of x0

1 and x0
2 are the same in the alias and alibi

interpretations, but the significance of these quantities is completely different in the
two cases. They are the components of an unrotated vector in a rotated reference
frame in the alias interpretation, while they are the components of a rotated vector
in an unrotated reference frame in the alibi interpretation. When necessary, we can
use a more precise notation to distinguish these two different interpretations, as
in Eq. (2.45); but we can usually avoid this complication because this book will
rarely, if ever, employ the active interpretation of transformations. In the example
illustrated in Fig. 2.2b,c, it can be seen that the magnitude of the rotation is the
same in the two interpretations but the sense of the rotation is opposite. It is
important to remember this important difference in the sense of rotation in the two
interpretations; it results in some unexpected minus signs, and overlooking them has
led to actual errors in flight software.1

1One example is an incorrect sign for the velocity aberration correction for star tracker measure-
ments on the WMAP spacecraft, which fortunately was easily corrected.
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a b c

Fig. 2.2 Alias and Alibi interpretations of a transformation. (a) Components. (b) Alias. (c) Alibi

Now consider that we have three reference frames, denoted F , G, and H , and
that we transform a vector representation from frame F to frame G and then from
frame G to frame H . This is effected by the successive transformations

xH D DHGxG D DHG .DGF xF / D .DHGDGF / xF (2.46)

We could have transformed directly from F to H by xH D DHF xF . These
transformations must be equivalent for any vector xF , so it must be true that

DHF D DHGDGF (2.47)

This says that successive transformations are accomplished by simple matrix
multiplication of DCMs, which may appear to be an obvious result. It is not
inconceivable, though, that the method for implementing successive transformations
could have been more complex.

Transforming from frame F to frame G and back to frame F is effected by the
matrixDFF , which must be the identity matrix. But from Eqs. (2.44) and (2.47) this
means that

I D DFGDGF D DFGD
T
FG D DT

GFDGF (2.48)

Matrices like DCMs for which I D DDT D DTD are called orthogonal matrices,
or sometimes orthonormal matrices. The transpose of an orthogonal matrix is equal
to its inverse; its columns constitute a set of orthonormal vectors, as do its rows.
In fact, the columns and rows of a DCM are just the representations in one reference
frame of the basis vectors in the other reference frame. Equation (2.7c) can be used
to show that the product of two orthogonal matrices is orthogonal; i.e. if A and B
are orthogonal, then

.AB/.AB/T D AB BTAT D AAT D I (2.49)

This means that the set of n � n orthogonal matrices form a group, which requires,
among other things, that the product of two elements of the group is also an element.
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The group of n�n orthogonal matrices is called the orthogonal group O.n/. Because
1 D det I D det.DTD/ D .detD/2, the determinant of an orthogonal matrix must
be equal to ˙1. It follows that the set of n � n proper orthogonal matrices, which
are those whose determinant isC1, also form a group, called the special orthogonal
group SO.n/. The orthogonal matrices with determinant �1 do not form a group,
because the product of two matrices with determinant �1 has determinant C1.

An important result follows from Eq. (2.48), namely that

xG � yG D .DGF xF /TDGF yF D xTFD
T
GFDGF yF D xF � yF (2.50)

This says that the value of the inner product of two vectors is independent of the
reference frame in which they are represented, or equivalently that reference frame
transformations preserve both lengths of vectors and angles between them. Inserting
a matrix between two vectors leads to the relation

xTFMF yF D xTFD
T
GFDGFMFD

T
GFDGF yF D xTGMGyG (2.51)

where

MG � DGFMFD
T
GF (2.52)

This defines how matrices must transform under reference frame transformations
for Eq. (2.51) to hold.

2.5 Vectors in Three Dimensions

The case of three dimensions is especially interesting because we and our vehicles
live in three-dimensional space.2 In three dimensions, the abstract vectors generally
represent physical quantities that have both a magnitude and a direction, like
displacements or velocities.

We can define a vector product or cross product for three-component vectors in
terms of their components by

x � y D
2
4
x2y3 � x3y2
x3y1 � x1y3
x1y2 � x2y1

3
5 D �y � x (2.53)

It is easily seen that the cross product x � y is perpendicular to both x and y. The
cross product can also be obtained using matrix multiplication:

2This is true in classical physics. Various contemporary physical theories indicate that we live in a
space having anywhere from two to eleven dimensions.
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x � y D Œx�� y (2.54)

where Œx�� is the cross product matrix, defined by

Œx�� �
2
4
0 �x3 x2
x3 0 �x1
�x2 x1 0

3
5 (2.55)

Note that Œx�� is a skew symmetric matrix.3

The cross product and the cross product matrix obey the following relations:

x � .y � z/ D .x � y/ � z (2.56a)

Œx�� Œy�� D � .x � y/ I C y xT (2.56b)

Œx�� Œy�� � Œy�� Œx�� D y xT � x yT D Œ.x � y/�� (2.56c)

adj Œx�� D x xT (2.56d)

It follows from Eq. (2.56b) that

kx � yk2 D .Œx�� y/T .Œx�� y/ D �yT Œx��2y D kxk2kyk2 � .x � y/2 (2.57)

With Eq. (2.27), this means that

kx � yk D kxk kyk sin � (2.58)

It is often convenient to express a 3 � 3 matrix in terms of its columns:

M � �a b c
�

(2.59)

With this notation, the determinant is

detM D a � .b � c/ D b � .c � a/ D c � .a � b/ (2.60)

and the adjoint is

adjM � adj
��

a b c
�	 D

2
4
.b � c/T

.c � a/T

.a � b/T

3
5 (2.61)

We can also derive the useful identity

3A vector product of two vectors can be defined only in three dimensions because an n � n skew-
symmetric matrix has exactly n independent parameters only for n D 3.



30 2 Matrices, Vectors, Frames, Transforms

MT Œx��M D
2
4

a � .x � a/ a � .x � b/ a � .x � c/
b � .x � a/ b � .x � b/ b � .x � c/
c � .x � a/ c � .x � b/ c � .x � c/

3
5

D
2
4

0 � .a � b/ � x .c � a/ � x
.a � b/ � x 0 � .b � c/ � x
� .c � a/ � x .b � c/ � x 0

3
5 D Œf.adjM/xg��

(2.62)

Setting M D AT , where A is a proper orthogonal 3 � 3 matrix, gives adjM D A

and

A Œx�� AT D Œ.Ax/��; for A 2 SO(3) (2.63)

This special case is much more useful than the general case. In the specific case of
a reference frame transformation, we have

AGF ŒxF�� ATGF D Œ.AGF xF /�� D ŒxG�� (2.64)

which can be viewed as a special case of Eq. (2.52). This equation can be used to
show that

xG � yG D Œ.AGF xF /��AGF yF D AGF .xF � yF / (2.65)

The significance of this is that the cross product of two vectors transforms exactly
like any other vector under a reference frame rotation, which is what we want.

The discussion so far has been purely algebraic; it has said nothing about the
right hand rule. Discussing this rule requires an intuitive picture of vectors in three-
dimensional space. First note that the definition of the cross product means that the
natural basis vectors defined by Eq. (2.35) satisfy the relation e3 D e1 � e2. Now
consider the possible orientation of these three basis vectors in physical space. The
orientation of e1 and e2 is arbitrary, except that they must be orthogonal; but this
leaves us only two choices for e3, which must be perpendicular to both e1 and e2.
We choose the orientation of e3 to satisfy the right hand rule, i.e: we place e1 and e2
tail-to-tail, flatten the right hand, extending it in the direction of e1, curl the fingers
toward e2 through the shortest angle, and choose e3 to point along the direction
indicated by the thumb. This defines a right-handed reference frame, and all cross
products will obey the right hand rule if we restrict ourselves to right handed
reference frames. To see this explicitly, consider two arbitrary vectors x and y. There
is a reference frame in which

xF D kxk
2
4
1

0

0

3
5 ; yF D kyk

2
4

cos �
sin �
0

3
5 H) xF � yF D kxkkyk

2
4

0

0

sin �

3
5 (2.66)
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where � is the angle between x and y. This cross product obeys the right-hand rule,
and Eq. (2.65) guarantees that the right hand rule will then hold in any reference
frame. Note that if A had been an improper orthogonal matrix with determinant �1,
an undesirable minus sign would have appeared between the two sides of Eq. (2.63).
Seen from this point of view, the problem with improper orthogonal matrices is
that they would change a right-handed reference frame into a left-handed one; they
would turn the reference frame inside out.

2.6 Some Useful Reference Frames

Several reference frames in three dimensions are of special interest for attitude
analysis. We will discuss the most important of these in this section. In general,
a reference frame is specified by the location of its origin and the orientation of
its coordinate axes, with the orientation being much more important for attitude
analysis.

2.6.1 Spacecraft Body Frame

A spacecraft body frame is defined by an origin at a specified point in the spacecraft
body and three Cartesian axes. A body frame is used to align the various components
during spacecraft assembly. Components will generally shift due to the large forces
experienced during launch, though, and can also move while on orbit due to thermal
deformations. Every effort is made to limit these motions, but they cannot always
be neglected. Whether they are negligible or not depends on the pointing accuracy
required of the spacecraft. As an additional complication, some components of
the spacecraft, such as solar arrays or gimbaled instruments, are moved quite
deliberately. Therefore, it is quite common to define the body coordinate system
operationally as the orientation of some sufficiently rigid navigation base, which is a
subsystem of the spacecraft including the most critical attitude sensors and payload
instruments. The navigation base often takes the form of a specially constructed
optical bench, with its attached sensors and payload components. The purpose of
attitude estimation and attitude control is to ascertain and to control the orientation
of the navigation base relative to some external reference frame.

2.6.2 Inertial Reference Frames

An inertial reference frame is a frame in which Newton’s laws of motion are valid.
It is a well known fact of classical mechanics that any frame moving at constant
velocity and without rotation with respect to an inertial frame is also inertial [5].
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The existence of these dynamically preferred frames raises the interesting question
of whether there is something with respect to which all inertial frames are non-
rotating and unaccelerated. Weinberg concludes in [25, p. 474] that “ . . . inertial
frames are any reference frames that move at constant velocity, and without rotation,
relative to frames in which the universe appears spherically symmetric.” This
characterization is consistent with Mach’s Principle, the hypothesis that inertial
frames are somehow determined by the mass of everything in the universe.

Celestial reference frames with their axes fixed relative to distant “fixed” stars
are the best realizations of inertial frames. The standard as of this writing is the
International Celestial Reference System (ICRF) with its axes fixed with respect
to the positions of several hundred distant extragalactic sources of radio waves,
determined by very long baseline interferometry [8, 11]. The z axis of this frame
is aligned with the Earth’s North pole, and the x axis with the vernal equinox, the
intersection of the Earth’s equatorial plane with the plane of the Earth’s orbit around
the Sun, in the direction of the Sun’s position relative to the Earth on the first day of
spring. Unfortunately, neither the polar axis nor the ecliptic plane is inertially fixed,
so the ICRF axes are defined to be the mean orientations of the pole and the vernal
equinox (the positions with short-period motions removed by dynamic models) at
some fixed epoch time. The origin of the ICRF is at the center-of-mass of the solar
system.

An approximate inertial frame, known as the Geocentric Inertial Frame (GCI)
has its origin at the center of mass of the Earth. This frame has a linear acceleration
because of the Earth’s circular orbit about the Sun, but this is unimportant for
attitude analysis. The axes of a “mean of epoch” GCI frame are aligned with the
mean North pole and mean vernal equinox at some epoch. The GCI frame is denoted
by the triad fi1; i2; i3g, as shown in Fig. 2.3.

2.6.3 Earth-Centered/Earth-Fixed Frame

The Earth-Centered/Earth-Fixed (ECEF) Frame is denoted by f�1; �2; �3g as shown
in Fig. 2.3. This frame is similar to the GCI frame with �3 D i3; however, the �1 axis
points in the direction of the Earth’s prime meridian, and the �2 axis completes the
right-handed system. Unlike the GCI frame, the ECEF frame rotates with the Earth.
The rotation angle is known as the Greenwich Mean Sidereal Time (GMST) angle
and is denoted by �GMST in Fig. 2.3.

The transformation of a position vector r from its GCI representation rI to its
ECEF representation rE follows

rE D
2
4
x

y

z

3
5 D AEI rI D

2
4

cos �GMST sin �GMST 0

� sin �GMST cos �GMST 0

0 0 1

3
5 rI (2.67)
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Fig. 2.3 Definitions of various reference frames

Determining the GMST angle requires the Julian date, JD. For a given year Y
(between 1901 and 2099), month M , day D, hour h, minute m, and second s, the
Julian date is calculated by [24]

JD.Y;M;D; h;m; s/ D 1; 721; 013:5C 367 Y � INT



7

4

�
Y C INT

�
M C 9
12

���

C INT

�
275M

9

�
CD C 60 hCmC s=60�

1440
(2.68)

where INT denotes the integer part and 60* denotes using 61 s for days with a leap
second. We need to compute T0, the number of Julian centuries elapsed from the
epoch J2000.0 to zero hours of the date in question:

T0 D JD.Y;M;D; 0; 0; 0/ � 2; 451; 545
36; 525

(2.69)

The GCI coordinate system is fixed relative to the stars, not the Sun, so the GMST
angle is the mean sidereal time at zero longitude. A sidereal day is the length of
time that passes between successive crossings of a given projected meridian by a
given fixed star in the sky. It is approximately 3 min and 56 s shorter than a solar
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day of 86,400 s, which is the length of time that elapses between the Sun reaching
its highest point in the sky two consecutive times [1]. Therefore �GMST in units of
seconds is calculated by

�GMST D 24; 110:54841C 8; 640; 184:812866 T0 C 0:093104 T 20
� 6:2 � 10�6 T 30 C 1:002737909350795.3600 hC 60mC s/ (2.70)

This quantity is next reduced to a range from 0 to 86,400 s by adding/subtracting
multiples of 86,400. Then �GMST in degrees is obtained by dividing by 240, because
1 sD 1/240ı.

The ECEF position vector can be specified by its magnitude r � krEk D krIk,
longitude �, and geocentric latitude 	0. An alternative description in terms of
geodetic latitude, 	, is often employed. The Earth’s geoid can be approximated by
an ellipsoid of revolution about its minor axis, the Earth’s rotation axis, as shown
in Fig. 2.4 [11]. The geocentric latitude 	0 D sin�1.z=r/ is the angle between the
equatorial plane and the radius vector from the center of the Earth. The geodetic
latitude 	 is the angle between the equatorial plane and the normal to the reference
ellipsoid. The flattening of the ellipsoid is given by

f D R˚ �Rpole

R˚
(2.71)

where R˚ is the equatorial radius of the Earth and Rpole is the distance from the
center of the Earth to a pole. The eccentricity of the reference ellipsoid is given by

e D
p
1 � .1 � f /2 D

p
f .2 � f / (2.72)

Many reference ellipsoid models exist, but for all of them the difference between
the equatorial and polar radii is less than 22 km, so that f � 1=298:257 is a valid
approximation. A common ellipsoid model is given by the World Geodetic System
1984 model (WGS-84), with semimajor axis R˚ � a D 6; 378; 137:0 m and
semiminor axis Rpole � b D 6; 356; 752:3142 m. The eccentricity of this ellipsoid
is given by e D 0:0818.
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To determine the ECEF position vector from the geodetic coordinates, latitude 	,
longitude �, and height h, we first compute the distance between the z axis and the
normal to the ellipsoid, finding [3]

N D R˚p
1 � e2 sin2 	

(2.73)

Then the ECEF position coordinates are given by

x D .N C h/ cos	 cos� (2.74a)

y D .N C h/ cos	 sin� (2.74b)

z D ŒN.1 � e2/C h� sin	 (2.74c)

This gives the following relationship between geocentric and geodetic latitudes

tan	 D N C h
N.1 � e2/C h tan	0 (2.75)

which has the first order approximation in the flattening f

	 D 	0 C fR˚
R˚ C h sin.2	0/ (2.76)

The difference between geodetic and geocentric latitudes amounts to 12 arcmin at
most [11].

The conversion from ECEF to geodetic coordinates is not straightforward, but a
closed-form solution is given in [20]. Given, x, y and z in ECEF coordinates, the
solution is given by

e2 D 1 � b2=a2; 
2 D a2=b2 � 1; � D
p
x2 C y2 (2.77a)

p D jzj=
2; s D �2=.e2
2/; q D p2 � b2 C s (2.77b)

u D p=pq; v D b2u2=q; P D 27vs=q; Q D .pP C 1CpP /2=3
(2.77c)

t D .1CQC 1=Q/=6; c D
p

u2 � 1C 2t; w D .c � u/=2 (2.77d)

d D sign.z/
p
q
h
wC .

p
t 2 C v � uw � t=2 � 1=4/1=2

i
(2.77e)

N D a
p
1C 
2d2=b2; 	 D sin�1Œ.
2 C 1/.d=N /� (2.77f)

h D � cos	C z sin	 � a2=N; � D atan2.y; x/ (2.77g)
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where atan2.y; x/ is the standard function giving the argument of the complex
number x C iy. It should be noted that longitude here is assumed to range between
�180ı (West) toC180ı (East).

2.6.4 Local-Vertical/Local-Horizontal Frame

It is often convenient, especially for Earth-pointing spacecraft, to define a reference
frame referenced to the spacecraft’s orbit, which we will identify by the subscriptO .
The most common case is the Local-Vertical/Local-Horizontal (LVLH) orbit frame
shown in Fig. 2.5a. It has its z axis o3 pointing along the nadir vector, directly toward
the center of the Earth from the spacecraft,4 and its y axis o2 pointing along the
negative orbit normal, in the direction opposite to the spacecraft’s orbital angular
velocity. The x axis o1 completes the right-handed triad. The representations of
these vectors in an inertial frame I are

o3I D �rI =krIk � �g3rI (2.78a)

o2I D �.rI � vI /=krI � vIk � �g2.rI � vI / (2.78b)

o1I D o2I � o3I D g2g3.rI � vI / � rI D g2g3Œ krIk2vI � .rI � vI /rI � (2.78c)

where rI and vI D PrI are the spacecraft position and velocity in the I frame. Note
that the x axis is in the direction of the velocity for a circular orbit. The rotation
matrix from the O frame to the I frame can be expressed by Eq. (2.45) as

AIO D
�
o1I o2I o3I

�
(2.79)

4This is the geocentric nadir vector. Some spacecraft use the geodetic nadir vector, which is normal
to the surface of the reference ellipsoid, but we will not consider this complication.
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The angle between the velocity vector and the local horizontal .o1I � o2I / plane
is called the flight-path angle, denoted by � in Fig. 2.5b. The specific angular
momentum is given by hI D rI � vI , as discussed in Chap. 10. From Eq. (2.58)
we have h � khjk D rv sin', where r � krIk and v � kvIk. Since � C ' D 90ı,
then the flight path angle can be computed using

cos � D h

rv
(2.80)

The sign of � is the same as the sign of rI � vI . Notice that o1I is in the direction of
the spacecraft velocity and the flight path angle is always zero for a circular orbit,
because rI � vI D 0 in this case.

2.7 Quaternions

We consider a quaternion to be a four-component vector with some additional
operations defined on it. A quaternion q has a three-vector part q1W3 and a scalar
part q4

q D
�

q1W3
q4

�
where q1W3 D

2
4
q1
q2
q3

3
5 (2.81)

The most important added quaternion operations are two different products of a pair
of quaternions Nq and q

Nq˝ q D
�
q4 Nq1W3 C Nq4 q1W3 � Nq1W3 � q1W3

Nq4 q4 � Nq1W3 � q1W3
�

(2.82a)

Nqˇ q D
�
q4 Nq1W3 C Nq4 q1W3 C Nq1W3 � q1W3

Nq4 q4 � Nq1W3 � q1W3
�

(2.82b)

Notice that these definitions differ only in the sign of the cross product in the vector
part, from which it follows that5

Nq˝ q D qˇ Nq (2.83)

Our quaternions are conceptually different from those introduced by Hamilton in
1844, before the introduction of vector notation. Hamilton defined a quaternion as
q D q0 C iq1 C jq2 C kq3, a hypercomplex extension of a complex number z D
xC iy, with i , j , and k obeying the relations i 2 D j 2 D k2 D �1, ij D �j i D k,

5The notation Nq ˝ q was introduced in [7], and the notation Nq ˇ q is a modification of notation
introduced in [13].
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jk D �kj D i , and ki D �ik D j . Hamilton’s product Nqq corresponds to our
product Nqˇq, but the product Nq˝q has proven to be more useful in attitude analysis.
Some authors’ notations differ from ours in labeling the scalar part of a quaternion
q0 and putting it at the top of the column vector. Care must be taken to thoroughly
understand the conventions embodied in any quaternion equation that one chooses
to reference.

Quaternion multiplication is associative, q ˝ . Nq ˝ NNq/ D .q ˝ Nq/ ˝ NNq and
distributive, q ˝ . Nq C NNq/ D q ˝ Nq C q ˝ NNq, but not commutative in general,
q˝ Nq ¤ Nq˝ q. This parallels the situation for matrix multiplication. In those cases
for which q˝ Nq D Nq˝ q, the quaternions q and Nq are said to commute. Analogous
equations hold for the product Nqˇ q.

Quaternion products can be represented by matrix multiplication, very much like
the cross product:

q˝ Nq D Œq˝� Nq D Nqˇ q (2.84a)

qˇ Nq D Œqˇ� Nq D Nq˝ q (2.84b)

where

Œq˝� �
�
q4 I3 � Œq1W3�� q1W3
�qT1W3 q4

�
D ��.q/ q

�
(2.85)

and

Œqˇ� �
�
q4 I3 C Œq1W3�� q1W3
�qT1W3 q4

�
D ��.q/ q

�
(2.86)

with �.q/ and �.q/ being the 4 � 3 matrices

�.q/ �
�
q4 I3 � Œq1W3��
�qT1W3

�
D

2
664

q4 q3 �q2
�q3 q4 q1
q2 �q1 q4
�q1 �q2 �q3

3
775 (2.87)

�.q/ �
�
q4 I3 C Œq1W3��
�qT1W3

�
D

2
664

q4 �q3 q2
q3 q4 �q1
�q2 q1 q4
�q1 �q2 �q3

3
775 (2.88)

It is easy to show that

�T .q/�.q/ D �T .q/�.q/ D kqk2I3 (2.89a)

�.q/�T .q/ D �.q/�T .q/ D kqk2I4 � qqT (2.89b)

�T .q/q D �T .q/q D 03 (2.89c)

from which it follows that kqk�1Œq˝� and kqk�1Œqˇ� are orthogonal matrices.
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We define the identity quaternion

Iq �
�

03
1

�
(2.90)

which obeys Iq ˝ q D q˝ Iq D Iq ˇ q D qˇ Iq D q, as required of the identity.
We also define the conjugate q� of a quaternion, obtained by changing the sign

of the three-vector part:

q� D
�

q1W3
q4

��
�
��q1W3
q4

�
(2.91)

The product of a quaternion with its conjugate is equal to the square of its norm
times the identity quaternion

q˝ q� D q� ˝ q D qˇ q� D q� ˇ q D kqk2 Iq (2.92)

The conjugate of the product of two quaternions Nq and q is the product of the
conjugates in the opposite order .p ˝ q/� D q� ˝ p�. This relation, Eq. (2.92),
and the associativity of quaternion multiplication can be used to show that

kp˝ qk D kpˇ qk D kpkkqk (2.93)

It is not difficult to see that

Œq�˝� D Œq˝�T and Œq�ˇ� D Œqˇ�T (2.94)

The inverse of any quaternion having nonzero norm is defined by

q�1 � q�=kqk2 (2.95)

so that q ˝ q�1 D q�1 ˝ q D q ˇ q�1 D q�1 ˇ q D Iq , as required by the
definition of an inverse. The inverse of the product of two quaternions is the product
of the inverses in the opposite order .p˝ q/�1 D q�1 ˝ p�1.

We will overload the quaternion product notation to allow us to multiply a three-
component vector x and a quaternion, using the definitions

x˝ q �
�

x
0

�
˝ q D Œx˝�q and q˝ x � q˝

�
x
0

�
(2.96)

with analogous definitions for xˇ q, Œxˇ�, and qˇ x. Note that the matrices

Œx˝� D
��Œx�� x
�xT 0

�
� ˝.x/ and (2.97a)

Œxˇ� D
�
Œx�� x
�xT 0

�
� � .x/ (2.97b)
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are skew-symmetric. The relation

x˝ q D qˇ x D ��.q/ q
� �x
0

�
D �.q/ x (2.98)

is often very useful.

2.8 Rotations and Euler’s Theorem

The discipline of spacecraft attitude determination is basically the study of methods
for estimating the proper orthogonal matrix that transforms vectors from a reference
frame fixed in space to a frame fixed in the spacecraft body. Thus it is the study of
proper orthogonal 3 � 3 matrices, or matrices in the group SO(3). We will refer to
these as rotation matrices or attitude matrices and denote them by the letter A.

Euler’s Theorem6 states one of the most important properties of attitude matrices,
namely that any rotation is a rotation about a fixed axis. Recall that the transforma-
tion of a vector representation xF from reference frame F to reference frame G by
the attitude matrix AGF is given by

AGF xF D xG (2.99)

Euler’s Theorem asserts the existence of a vector e along the direction of the rotation
axis that has the same representation in frame G as in frame F . This means that we
can substitute xF D xG D e in Eq. (2.99) and state Euler’s theorem algebraically as

A e D e (2.100)

This is a special case of an eigenvalue/eigenvector relationship. An eigenvector of a
general square matrix M is a nonzero vector x for which multiplication by M has
the same effect as multiplication by a scalar, i.e.

M x D 	x (2.101)

where the scalar 	 is the eigenvalue corresponding to the eigenvector x. The solution
for x is only determined up to a scale factor in general, so eigenvectors are almost
invariably given as unit vectors. In order for Eq. (2.101) to have a nonzero solution
for x, the matrix .	I �M/ must be singular.7 Therefore, from Eq. (2.16) we have

det.	I �M/ D 	n C ˛1	n�1 C � � � C ˛n�1	C ˛n D 0 (2.102)

6Leonhard Euler (1707–1783) laid the foundations for the analysis of rotations, and his fingerprints
are all over the subject. Thus, attaching his name to anything serves poorly for distinguishing it
from other results also bearing his name.
7Otherwise, we would have x D .	I �M/�10 D 0.
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This polynomial equation of degree n is known as the characteristic equation ofM .
The eigenvalues are the n roots of the characteristic equation, counting multiple
roots by their multiplicity.

In the language of eigenvalues and eigenvectors, Euler’s theorem says that one
of the eigenvalues of an attitude matrix has the value 	 D 1. The characteristic
equation of a 3 � 3 matrix M is easily found by explicit computation of the
determinant to take the form

	3 � 	2trM C 	 tr.adjM/ � det M D 0 (2.103)

For the special case of a proper orthogonal 3 � 3 matrix, we find the characteristic
equation to be

0 D 	3 � 	2trAC 	 trA � 1 D .	 � 1/Œ	2 C 	.1 � trA/C 1� (2.104)

This clearly has a root 	 D 1, which proves Euler’s theorem with the rotation axis e
being the eigenvector corresponding to this eigenvalue.

2.9 Attitude Representations

2.9.1 Euler Axis/Angle Representation

We have seen that every proper orthogonal 3� 3 matrix has a rotation axis specified
by a unit vector e. The only other parameter needed to completely specify the matrix
is the angle of rotation # about this axis. This axis and angle are known as the Euler
axis and Euler angle of the rotation. We will now show how to parameterize the
attitude matrix in terms of these parameters.

Figure 2.6 depicts the rotation of an arbitrary vector x through an angle # about
an axis e. This figure is actually more illustrative of an active (alibi) rotation of the
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vector, but we want to represent the transformation as a passive (alias) rotation of
the reference frame [5]. We make the connection between these two interpretations
by referring to Fig. 2.2b,c, which show that we can move from one interpretation
to the other by simply changing the direction of the rotation. The mapping of the
vector x into the rotated reference frame is denoted as A.e; #/x, as indicated in the
figure.

We express x as the sum of vectors parallel and perpendicular to the rotation axis

x D xk C x? (2.105)

where

xk � .x � e/ e D �e eT
	

x and x? � x � .x � e/e D .I3 � e eT /x (2.106)

The rotation leaves xk alone, but rotates x? out of the plane defined by e and x. The
cross product e�x is perpendicular to that plane and has magnitude ke�xk D kx?k
by Eq. (2.57), so the result of the norm-preserving rotation by angle # is

A.e; #/ x D xk C .cos#/ x? � .sin#/ e � x (2.107)

The sign of the last term is chosen to agree with the sense of the rotation shown in
Fig. 2.2b, which is regarded as a rotation in the positive sense about e3 D e1 � e2,
the outward normal from the plane of the figure.

Because x is an arbitrary vector, Eq. (2.107) means, inserting the definitions of
xk and x?, that

A.e; #/ D .cos#/ I3 � sin# Œe��C .1 � cos#/e eT (2.108)

This is the Euler axis/angle parameterization of an attitude matrix. We can also
express this, using Eq. (2.56b) as

A.e; #/ D I3 � sin# Œe��C .1 � cos#/Œe��2 (2.109)

The attitude matrix is expressed in explicit component form as

A.e; #/ D
2
4

c C .1 � c/e21 .1 � c/e1e2 C s e3 .1 � c/e1e3 � s e2
.1 � c/e2e1 � s e3 c C .1 � c/e22 .1 � c/e2e3 C s e1
.1 � c/e3e1 C s e2 .1 � c/e3e2 � s e1 c C .1 � c/e23

3
5

(2.110)

where we have written c � cos# and s � sin# for conciseness. The attitude
matrix appears to depend on four parameters, but there are only three independent
parameters owing to the constraint kek D 1. The nine-component attitude matrix
has only three independent parameters because of the orthogonality constraint
AAT D I . This matrix constraint is equivalent to six scalar constraints rather than
nine because the product AAT is symmetric.
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Equations (2.108)–(2.110) show that the attitude matrix is a periodic function of
the rotation angle over an unlimited range with period 2 . Some useful identities
satisfied by the Euler axis/angle representation are

A.e; #/ D A.�e;�#/ (2.111a)

A�1.e; #/ D AT .e; #/ D A.�e; #/ D A.e;�#/ (2.111b)

A.e; / D A.�e; / D 2 e eT � I3 (2.111c)

We now turn to the question of finding the rotation axis and angle corresponding
to a given attitude matrix. Noting from Eq. (2.108) that

trA.e; #/ D 1C 2 cos# (2.112)

we see that the rotation angle is given by

# D cos�1
�

trA.e; #/ � 1
2

�
(2.113)

If cos# D 1 the attitude matrix is A.e; #/ D I3, and the rotation axis is clearly
undefined. If �1 < cos# < 1, the axis of rotation is given by

e D 1

2 sin#

2
4
A23.e; #/ � A32.e; #/
A31.e; #/ � A13.e; #/
A12.e; #/ � A21.e; #/

3
5 (2.114)

If cos# D �1 the axis of rotation can be found by normalizing any nonzero
column of

A.e; #/C I3 D 2 e eT (2.115)

because all the columns of this matrix are parallel to e. The overall sign of the
rotation axis vector is undetermined in this case, but Eq. (2.111c) shows that this
sign makes no difference.

The other two eigenvalues of the attitude matrix are the other two roots of
Eq. (2.104). Inserting the value of trA.e; #/ into this equation gives

0 D 	2�2	 cos#C1 D 	2�	 �ei# C e�i#	C1 D �	 � ei#
	 �
	 � e�i#	 (2.116)

These two eigenvalues form a complex conjugate pair on the unit circle in the
complex plane, and the corresponding eigenvectors are complex as well. This result
can be generalized to proper orthogonal matrices of higher dimensionality. A matrix
in SO(2n C 1) has one eigenvalue equal to C1 and n conjugate pairs on the unit
circle in the complex plane. A matrix in SO(2n) has only the n conjugate pairs
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on the unit circle. Thus Euler’s theorem holds in any space of odd dimensionality,
but not in a space with an even number of dimensions. If we regard Fig. 2.2b as
a rotation in two-dimensional space rather than a projection onto the plane of a
rotation in a higher-dimensional space, for example, it is easy to see that there is
no invariant vector in the plane. This does not preclude the possibility of a pair of
complex conjugate eigenvectors accidentally having the common valueC1.

Cross-product and trigonometric identities can be used to find the unsurprising
result of successive rotations about the same axis,

A.e; #/A.e; '/ D A.e; '/A.e; #/ D A.e; # C '/ (2.117)

but this is more easily derived using the quaternion representation of rotations. The
composition of rotations about non-parallel axes does not have a simple form in the
angle/axis representation. Another useful result holds for two attitude matrices A0
and A.e; #/. From Eq. (2.108) we have

A0A.e; #/AT0 D .cos#/ I3 � .sin#/A0Œe��AT0 C .1 � cos#/A0 e eT AT0 (2.118)

This can be written, using Eqs. (2.7c) and (2.63), as

A0A.e; #/AT0 D A.A0 e; #/ (2.119)

which shows that A0AAT0 is a rotation by the same angle as A, but about a rotated
axis.

2.9.2 Rotation Vector Representation

It is convenient for analysis, but not for computations, to combine the Euler axis and
angle into the three-component rotation vector

# � # e (2.120)

To express the attitude matrix in terms of the rotation vector, we insert the Taylor
series expansions of the sine and cosine into Eq. (2.109), giving8

A.e; #/ D I3 � Œe��
1X
iD0

.�1/i#2iC1
.2i C 1/Š � Œe��

2

1X
iD1

.�1/i#2i
.2n/Š

(2.121)

Equation (2.56b) can be used to show that Œe��3 D �Œe��, so we have

A.e; #/ D I3C
1X
iD0

Œ.�# e/��2iC1
.2iC1/Š C

1X
iD1

Œ.�# e/��2i
.2n/Š

D
1X
nD0

Œ.�# e/��n
nŠ

(2.122)

8Note that these power series expansions assume that we measure angles in radians.
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A function of a square matrix is defined by its Taylor series, so this expression for
the attitude matrix in terms of the rotation vector can finally be written as

A.e; #/ D exp .�Œ#��/ (2.123)

where exp is the matrix exponential.
This is the first three-parameter representation of rotations that we have encoun-

tered. It is a very useful representation for the analysis of small rotations; but it
is not useful for large rotations, mainly because it obscures the periodicity of the
attitude matrix as a function of # . In particular, it is not at all obvious in this
representation that a rotation by an angle # D 2 is equivalent to the identity
transformation. Equation (2.113) shows that we can restrict the rotation angle to the
range 0 � # �  , which avoids this problem and gives a 1:1 mapping of rotations
with # <  to rotation vectors. The rotation vectors fill a ball of radius  ,
with the two vectors at the ends of a diameter of the ball representing the same
attitude according to Eq. (2.111c). This causes the difficulty that the rotation vector
parameterization of a smoothly-varying attitude can jump discontinuously from
one side of the ball to the other. This discontinuity can be avoided by giving
up the 1:1 mapping by allowing rotation angles greater than  , but this causes
other difficulties. It is an unavoidable fact that the rotation group has no global
three-component parameterization without singular points [22]. The expense of
computing the matrix exponential also renders the rotation vector parameterization
impractical for numerical computations.

2.9.3 Quaternion Representation

Substituting sin# D 2 sin.#=2/ cos.#=2/ and cos# D cos2.#=2/ � sin2.#=2/ into
Eq. (2.108) and defining the quaternion

q.e; #/ D
�

e sin.#=2/
cos.#=2/

�
(2.124)

gives the quaternion representation of the attitude matrix

A.q/ D �q24 � kq1W3k2
	
I3 � 2q4Œq1W3��C 2q1W3 qT1W3

D
2
4
q21 � q22 � q23 C q24 2.q1q2 C q3q4/ 2.q1q3 � q2q4/
2.q2q1 � q3q4/ �q21 C q22 � q23 C q24 2.q2q3 C q1q4/
2.q3q1 C q2q4/ 2.q3q2 � q1q4/ �q21 � q22 C q23 C q24

3
5

(2.125)

We are abusing the notation by using both A.q/ and A.e; #/ to denote the attitude
matrix, and we will abuse it further when we define other representations. The
meaning of the argument of A.�/ will always be clear in context, however.
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The four parameters of the quaternion representation were first considered by
Euler, but their full significance was revealed by Rodrigues.9 For this reason, they
are often referred to as the Euler symmetric parameters or the Euler-Rodrigues
parameters. The beauty of the quaternion representation is that it expresses the
attitude matrix as a homogenous quadratic function of the elements of the quater-
nion, requiring no trigonometric or other transcendental function evaluations.
Quaternions are more efficient for specifying rotations than the attitude matrix itself,
having only four components instead of nine, and obeying only one constraint, the
norm constraint, instead of the six constraints imposed on the attitude matrix by
orthogonality.

Quaternions used to parameterize rotations are unit quaternions, i.e. quaternions
with unit norm, as defined by Eq. (2.124). A unit quaternion always has an inverse,
which is identical with its conjugate. Also, the discussion in Sect. 2.7 says that the
matrices Œq˝� and Œqˇ� for a unit quaternion are orthogonal. We will now derive
a useful expression for Œq˝� in terms of the rotation vector. Because it is a linear
function of q, we have

Œq.e; #/˝� D cos.#=2/ŒIq˝�C sin.#=2/Œe˝� D cos.#=2/I4 C sin.#=2/Œe˝�
(2.126)

Now expand the sine and cosine in Taylor series and use Œe˝�2 D �I4, to get

Œq.e; #/˝� D
1X
iD0

Œ.# e=2/˝�2i
.2n/Š

C
1X
iD0

Œ.# e=2/˝�2iC1
.2i C 1/Š D expŒ.#=2/˝� (2.127)

This result and its derivation are very similar to Eq. (2.123).
We now want to show how a rotation of a three-component vector x can be

implemented by quaternion multiplication. This is accomplished by the quaternion
product

q˝ x˝ q� D Œq�ˇ�.q˝ x/ D Œqˇ�T Œq˝�
�

x
0

�
D
�
�T .q/�.q/ x

0

�
(2.128)

where we have used several relations from Sect. 2.7. Explicit multiplication and
comparison with Eq. (2.125) gives

�T .q/�.q/ D A.q/ (2.129)

9Olinde Rodrigues (1795–1851) obtained a doctorate in mathematics in 1815, with a thesis con-
taining his well-known formula for the Legendre polynomials. He published nothing mathematical
for the next 21 years, devoting himself to banking, the development of the French railways, utopian
socialism, writing several pamphlets on banking, and editing an anthology of workers’ poetry. Then
he published eight papers between 1838 and 1845, including his 1840 paper [14] greatly advancing
the state of the art in attitude analysis.
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so that

q˝ x˝ q� D
�
A.q/ x
0

�
(2.130)

This can be used to derive the rule for performing successive transformations using
quaternions. Applying a transformation by a second quaternion Nq gives

Nq˝ �q˝ x˝ q�	˝ Nq� D Nq˝ ŒA.q/ x�˝ Nq� D
�
A. Nq/A.q/ x

0

�
(2.131)

This transformation can also be written as

. Nq˝ q/˝ x˝ . Nq˝ q/� D
�
A. Nq˝ q/ x

0

�
(2.132)

Because this relation must hold for any x, we have proved that

A. Nq˝ q/ D A. Nq/A.q/ (2.133)

Thus the quaternion representation of successive transformations is just the product
of the quaternions of the constituent transformations, in the same way that the
attitude matrix of the combined transformation is the product of the individual
attitude matrices. A simple bilinear composition rule of this type holds only for
the attitude matrix and quaternion representations, which is one of the reasons for
the popularity of quaternions. With our˝ quaternion product definition, the order of
quaternion multiplication is identical to the order of matrix multiplication. The order
would have been reversed if we had used the classical ˇ definition of quaternion
multiplication. The quaternion equivalent of Eq. (2.117) for successive rotations
about the same axis follows from straightforward quaternion multiplication:

q.e; #/˝ q.e; '/ D q.e; '/˝ q.e; #/ D q.e; # C '/ (2.134)

Unit quaternions reside on the three-dimensional unit sphere S3 embedded in
four-dimensional quaternion space. Equation (2.124) shows that a rotation by 720ı,
but not a rotation by 360ı, is equivalent to the identity transformation in quaternion
space, because q.e; # C 4/ D q.e; #/ but q.e; # C 2/ D �q.e; #/. The attitude
matrix A.q/ is a homogenous quadratic function of the elements of the quaternion,
though, so q and �q give the same attitude matrix. This 2:1 mapping of quaternions
to rotations is a minor annoyance that cannot be removed without introducing
discontinuities like those that plague all three-parameter attitude representations.
Because the quaternions q and �q are on opposite hemispheres of S3, we could
get a 1:1 mapping of quaternions to rotations by restricting the quaternions to one
hemisphere, which is usually taken to be the hemisphere with q4 � 0. This gives
rise to the same problem as restricting the rotation vector to # �  , namely that a
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smoothly varying quaternion can jump discontinuously from one side to the other
of the equator bounding the hemisphere. Restricting the representation to positive
q4 effectively gives a three-parameter representation with q4 �

p
1 � kq1W3k2, so

it is not surprising that it leads to the same problems as other three-parameter
representations.

We finally turn to the problem of extracting a quaternion from an attitude matrix
[10]. We construct four four-component vectors from the components of A:

2
664

1C 2A11 � trA
A12 C A21
A13 C A31
A23 � A32

3
775 D 4q1q ;

2
664

A21 C A12
1C 2A22 � trA
A23 C A32
A31 � A13

3
775 D 4q2q

2
664

A31 C A13
A32 C A23

1C 2A33 � trA
A12 � A21

3
775 D 4q3q ;

2
664

A23 � A32
A31 � A13
A12 � A21
1C trA

3
775 D 4q4q (2.135)

The quaternion can be found by normalizing any one of these four vectors.
Numerical errors are minimized by choosing the vector with the greatest norm,
which is the vector with the largest value of jqi j on the right side. This can be
found by the following procedure. Find the largest of trA and Aii for i D 1; 2; 3.
If trA is the largest of these, then jq4j is the largest of the jqi j, otherwise the largest
value of jqi j is the one with the same index as the largest Aii . The overall sign
of the normalized vector is not determined, reflecting the twofold ambiguity of the
quaternion representation.

2.9.4 Rodrigues Parameter Representation

The three Rodrigues parameters made their appearance in Rodrigues’ classic 1840
paper [14]. They were later represented as the “vector semitangent of version” by
J. Willard Gibbs, who invented modern vector notation. For this reason, the vector
of Rodrigues parameters is often called the Gibbs vector and denoted by g. They are
related to the quaternion by

g D q1W3
q4

(2.136)

which has the inverse

q D ˙1p
1C kgk2

�
g
1

�
(2.137)
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Fig. 2.7 Relationship of the Rodrigues parameters (a) and the modified Rodrigues parameters
(b) to the quaternion

Using Eq. (2.124) to express the quaternion in terms of the Euler axis and angle
gives

g.e; #/ D e tan.#=2/ (2.138)

which explains Gibbs’ peculiar terminology.
The mapping from quaternions to Rodrigues parameters is illustrated in Fig. 2.7a.

The plane of the figure is the plane containing the origin, q, and the identity
quaternion Iq . The circle is the cross-section of the quaternion sphere S3, so it has
unit radius. The vertical axis is the q4 axis, and the horizontal axis represents the
three-dimensional q1W3 hyperplane. The horizontal line passing through Iq represents
the three-dimensional Gibbs vector hyperplane, which is tangent to S3 at the point
q D Iq . The Gibbs vector g is the projection of the quaternion from the origin onto
the Gibbs vector hyperplane. It is clear from the figure or from Eq. (2.136) that q
and �q map to the same Gibbs vector, so the Rodrigues parameters provide a 1:1
mapping of rotations. The price paid for this is that the Gibbs vector is infinite for
a 180ı rotation. Thus this parameterization is not recommended as a global attitude
representation, but it provides an excellent representation of small rotations.

Substituting Eq. (2.137) into Eq. (2.125) gives the Rodrigues parameter represen-
tation of the attitude matrix

A.g/ D .1 � kgk
2/I3 � 2Œg��C 2 g gT

1C kgk2 D I3 C 2 Œg��
2 � Œg��

1C kgk2

D 1

1C kgk2

2
4
1C g21 � g22 � g23 2.g1g2 C g3/ 2.g1g3 � g2/
2.g2g1 � g3/ 1 � g21 C g22 � g23 2.g2g3 C g1/
2.g3g1 C g2/ 2.g3g2 � g1/ 1 � g21 � g22 C g23

3
5

(2.139)
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This is similar to the quaternion representation in requiring no transcendental
function evaluations. However, it is a rational function of the Rodrigues parameters
rather than a simple polynomial function.

The relationship between the Rodrigues parameters and the attitude matrix can
also be expressed as a Cayley transform. The equations

A.g/ D .I3 � Œg��/ .I3 C Œg��/�1 D .I3 C Œg��/�1 .I3 � Œg��/ (2.140)

can be verified by multiplying Eq. (2.139) by I3 C Œg��. Because the matrices
.I3 � Œg��/ and .I3 C Œg��/�1 commute, the order of multiplication is irrelevant
and the Cayley transform can be written as

A.g/ D I3 � Œg��
I3 C Œg�� (2.141)

This is not a useful form for computation, owing to the required matrix inversion;
but it can be generalized to higher dimensions. Any n� n proper orthogonal matrix
M can be expressed in terms of an n � n skew-symmetric matrix S by

D D In � S
In C S (2.142)

A skew-symmetric n�nmatrix has n.n�1/=2 free parameters, the correct number
to parameterize an orthogonal n � n matrix that must obey n.nC 1/=2 constraints
on its n2 elements.

The rule for computing the Gibbs vector representing a composite of two
rotations is easily derived from Eqs. (2.82), (2.136), and (2.137). The Gibbs vector
corresponding to the quaternion product NNq D Nq˝ q is

NNg D NgC g � Ng � g
1 � Ng � g (2.143)

This is not a bilinear function of the constituent Gibbs vectors, so it cannot be
represented as a matrix product like quaternion composition.

Extracting the Rodrigues parameters from the attitude matrix is similar to
extracting the quaternion using one of the four-component vectors of Eq. (2.135).
Instead of normalizing one of those vectors, though, the Rodrigues parameters are
found by dividing the first three components of the vector by the fourth component.

2.9.5 Modified Rodrigues Parameters

The modified Rodrigues parameters (MRPs) are the newest of the commonly-
employed attitude representations. They were invented by T. F. Wiener in 1962
[26], rediscovered by Marandi and Modi in 1987 [9], and have been championed
by Junkins and Schaub [16]. They are related to the quaternion by

p D q1W3
1C q4 (2.144)
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which has the inverse

q D 1

1C kpk2
�

2p
1 � kpk2

�
(2.145)

Using Eq. (2.124) to express the quaternion in terms of the Euler axis and angle
gives

p.e; #/ D e tan.#=4/ (2.146)

It it easy to see that

p.e; # C 2/ D �e cot.#=4/ D � p.e; #/
kp.e; #/k2 (2.147)

but that p.e; # C 4/ D p.e; #/. Thus the MRP representation is 2:1 just like the
quaternion representation.

The shadow set of MRPs

pS � � p
kpk2 (2.148)

represents the same attitude as p, in the same way that q and �q represent the same
attitude. These two MRP vectors are illustrated in Fig. 2.7b, which shows them as
stereographic projections from the point q D �Iq onto the MRP hyperplane, which
is coincident with the q1W3 hyperplane. It is clear from the figure or from Eq. (2.148)
that kpSk � 1 if kpk � 1. Thus, in following the variation of an attitude represented
by MRPs, one can always keep the magnitude of the MRP vector from exceeding
unity by switching to the shadow MRP when needed. The logic required for this
is regarded by many practitioners to be less burdensome than carrying the fourth
component of a quaternion and enforcing the quaternion norm constraint, leading
them to prefer MRPs for numerical simulation of attitude motion. It is good practice
to allow the MRP norm to exceed unity by some amount to avoid “chattering”
between the MRP and its shadow in case the norm remains close to unity for an
extended period.

The MRP representation of the attitude matrix can be found by substituting
Eq. (2.145) into Eq. (2.125). It is easier to note that A.e; #/ D A2.e; #=2/ from
Eq. (2.117), so the MRP representation can be obtained by squaring the Gibbs vector
representation for a half-angle rotation:

A.p/ D
�
I3 � Œp��
I3 C Œp��

�2
D
�
I3 C 2 Œp��

2 � Œp��
1C kpk2

�2

D I3 C
8 Œp��2 � 4 �1 � kpk2	 Œp��

.1C kpk2/2 (2.149)
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The rule for computing the MRPs representing a composite of two rotations can
be derived using Eqs. (2.82), (2.144). and (2.145). The MRP vector corresponding
to the quaternion product NNq D Nq˝ q is

NNp D
�
1 � kpk2	 NpC �1 � kNpk2	p � 2 Np � p

1C kpk2kNpk2 � 2 Np � p (2.150)

This involves more computation than the composition of Gibbs vectors, but not an
unreasonable burden.

The most convenient way to extract the MRPs from the attitude matrix is to first
extract the quaternion and then compute the MRPs by Eq. (2.144).

Junkins and Schaub have developed a family of attitude representations inter-
mediate between the Rodrigues parameters and the MRPs by choosing a projection
point in quaternion space intermediate between the point q D 0 in Fig. 2.7a and the
point q D �Iq in Fig. 2.7b [15]. Tsiotras, Junkins, and Schaub have investigated
higher-order Cayley transforms

A.v/ D
�
I3 � Œv��
I3 C Œv��

�n
(2.151)

for n > 2 [23]. Neither of these generalizations has found wide application,
however.

2.9.6 Euler Angles

An Euler angle representation expresses a rotation from an initial frame I to a final
frame F as the product of three rotations: a rotation first from I to an intermediate
frameH , then to a second intermediate frame G, and finally to frame F . The frame
indices are generally omitted to simplify the notation, but including them clarifies
the form of the overall transformation

AFI .e�; e� ; e I�; �;  / � AFG.e ;  /AGH.e� ; �/AHI .e�; �/ (2.152)

The rotation axis vectors of the constituent rotations are constant column vectors,
and their subscripts do not label frames explicitly. The column vector e is a
representation of a rotation axis in frames F and G, e� is a representation in
frames G and H , and e� is a representation in frames H and I . The rotation
angles �, � , and  are the variables used to specify the rotation. The possibility of
employing Euler axis sequences with a wide choice of rotation axes was discovered
by Davenport [2,18], generalizing the classical applications of Euler angles that use
a more restricted set of rotation axes. We will establish general results for Euler
axis sequences using Davenport’s general formulation, and then the classical axis
sequences will follow as special cases.
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We want to be able to represent any attitude matrix by this Euler angle sequence.
In particular, we must be able to represent the attitude matrix that transforms e� into
e , which is to say

e D A.e�; e� ; e I�; �;  /e� D A.e ;  /A.e� ; �/A.e�; �/e� (2.153)

Multiplying on the left by AT .e ;  / and noting that AT .e ;  /e D e and
A.e�; �/e� D e� , we see that there must be an angle �0 for which

e D A.e� ; �0/e� (2.154)

A little thought (or algebra) shows that this requires e � e� D e� � e� . We must also
be able to represent the attitude matrix that transforms e� into �e , which means
that there must be an angle �1 for which �e D A.e� ; �1/e� . It follows from this
that �e � e� D e� � e� . These conditions can be satisfied simultaneously only if the
rotation axis e� is perpendicular to both e� and e , so that

e � e� D e� � e� D 0 (2.155)

This relation leads to a more complete description of the orientation of the physical
rotation axis vectors. Axis e� is fixed in the initial reference frame, e is fixed in the
final reference frame, and e� is perpendicular to both e� and e .

We have shown that Eq. (2.155) is a necessary condition for Eq. (2.152) to
represent a general attitude. We will now show that it is a sufficient condition. Note
that the angle �0 is not a variable, but is defined by the choice of rotation axes. Then
using Eqs. (2.111b), (2.117) and (2.119) gives

A.e�; e� ; e I�; �;  / DA
�
A.e� ; �0/e�;  

	
A.e� ; �/A.e�; �/

DA.e� ; �0/A.e�;  /A.e� ; � 0/A.e�; �/

DA.e� ; �0/A.e�; e� ; e� I�; � 0;  / (2.156)

where � 0 � � � �0. As A.e�; e� ; e I�; �;  / covers all of SO(3), the product
AT .e� ; �0/A.e�; e� ; e I�; �;  / also covers SO(3), so we only need to show that
A.e�; e� ; e� I�; � 0;  / can represent any attitude, or equivalently to show that this
rotation can transform the orthonormal basis e� , e� , e� � e� into any other
orthonormal basis. It is sufficient to show that e0

� � A.e�; e� ; e� I�; � 0;  /e�
can be any unit vector and e0

� � A.e�; e� ; e� I�; � 0;  /e� can be any unit vector
perpendicular to e0

� , because Eq. (2.65) then implies that e� � e� will transform into
e0
� � e0

� , completing the orthonormal triad. Now

e0
� DA.e�;  /A.e� ; � 0/A.e�; �/e� D A.e�;  /A.e� ; � 0/e�

D cos � 0 e� C sin � 0 sin e� C sin � 0 cos .e� � e� / (2.157)
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and we can find values of � 0 and  to make this equal any desired unit vector.
Furthermore, because A.e�; �/e� D cos� e� � sin� .e� � e� /, we have

e0
� D cos� A.e�;  /A.e� ; � 0/e� � sin� A.e�;  /A.e� ; � 0/.e� � e� / (2.158)

Rotations preserve orthogonality, so this superposition can represent any unit vector
in the plane perpendicular to e0

� , completing the proof that any Euler angle sequence
obeying Eq. (2.155) is sufficient to represent any attitude matrix.

An Euler angle parameterization has a twofold ambiguity in addition to the usual
2 ambiguity in specifying any angle. To see this ambiguity, insert the product
A.e�;�/A.e�; / before and after A.e� ; � 0/ in the second line of Eq. (2.156) and
use some axis/angle representation identities to get

A.e�; e� ; e I�; �;  / D A.e� ; �0/A.e�;  �/A
�
A.e�; /e� ; � � �0

	
A.e�; �C/

D A.e� ; �0/A.e�;  � /A.�e� ; � � �0/A.e�; � C /
D A.e� ; �0/A.e�;  � /A.e� ;��0/A.e� ; 2 �0 � �/A.e�; � C /
D A.e�; e� ; e I� C ; 2 �0 � �;  � / (2.159)

The rotation axes of the classical Euler angle representation are selected from
the set

e1 D
2
4
1

0

0

3
5 ; e2 D

2
4
0

1

0

3
5 ; e3 D

2
4
0

0

1

3
5 (2.160)

and a more compact notation is used for these representations

Aijk.�; �;  / D A.ek;  /A.ej ; �/A.ei ; �/ (2.161)

The possible choice of axes is constrained by the requirements i ¤ j and j ¤ k, as
required by Eq. (2.155). This leaves us with six symmetric sets of Euler parameters,
with i�j�k equal to:

1�2�1, 1�3�1, 2�3�2, 2�1�2, 3�1�3, and 3�2�3
and six asymmetric sets:

1�2�3, 1�3�2, 2�3�1, 2�1�3, 3�1�2, and 3�2�1
The explicit forms of the attitude matrices for all 12 sets are collected in Chap. 9.

As a specific example of the symmetric sequences, we consider the 3� 1� 3
sequence, which is often used for analytical treatments of rigid body motion and for
representing the attitude of spinning spacecraft:

A313.�; �;  / DA.e3;  /A.e1; �/A.e3; �/
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D
2
4

c s 0

�s c 0

0 0 1

3
5
2
4
1 0 0

0 c� s�
0 �s� c�

3
5
2
4

c� s� 0

�s� c� 0

0 0 1

3
5

D
2
4

c c� � s c� s� c s� C s c� c� s s�
�s c� � c c� s� �s s� C c c� c� c s�

s� s� �s� c� c�

3
5 (2.162)

We have written c � cos , s � sin , and analogous equations for � and �.
The symmetric Euler angle sets all have �0 D 0, so the angle ambiguity relation is

A313.�; �;  / D A313.� C ;��;  � / (2.163)

The asymmetric sets are often called the Tait-Bryan angles, although this
terminology has been called into question [4]. The three angles in an asymmetric
Euler angle sequence are often referred to as roll, pitch, and yaw. This terminology
originally described the motions of ships and then was carried over into aircraft
and spacecraft. Roll is a rotation about the vehicle body axis that is closest to the
vehicle’s usual direction of motion, and hence would be perceived as a screwing
motion. The roll axis is conventionally assigned index 1. Yaw is a rotation about the
vehicle body axis that is usually closest to the direction of local gravity, and hence
would be often be perceived as a motion that points the vehicle left or right. The yaw
axis is conventionally assigned index 3. Pitch is a rotation about the remaining
vehicle body axis, and hence would often be perceived as a motion that points the
vehicle up or down. The pitch axis is conventionally assigned index 2. Note that
this associates the terms roll, pitch, and yaw with the vehicle axes, while Eq. (2.161)
assigns the variables �, � , and  based on the order of rotations in the sequence
rather than on the axis indices. Thus there is no definite association between the
variables �, � , and  and the axis labels 1, 2, and 3 or the names roll, pitch and
yaw. A different convention is followed by many authors who denote roll by �,
pitch by � , and yaw by  . As always, the reader consulting any source should be
careful to understand the conventions that it follows.

The 3�2�1 sequence, which is often used to describe the attitude of an Earth-
pointing spacecraft, is a specific example of an asymmetric sequence.

A321.�; �;  / DA.e1;  /A.e2; �/A.e3; �/

D
2
4
1 0 0

0 c s 
0 �s c 

3
5
2
4

c� 0 �s�
0 1 0

s� 0 c�

3
5
2
4

c� s� 0

�s� c� 0

0 0 1

3
5

D
2
4

c� c� c� s� �s�
�c s� C s s� c� c c� C s s� s� s c�
s s� C c s� c� �s c� C c s� s� c c�

3
5 (2.164)
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Equation (2.154) shows that the angle �0 for this sequence is equal to �=2, so the
angle ambiguity relation is

A321.�; �;  / D A321.� C ;  � �;  � / (2.165)

In fact, all the Tait-Bryan angle axis sets have �0 D ˙=2 so they all obey
Eq. (2.165), taking into account the 2 ambiguity in the definition of � . The
Tait-Bryan representations have useful small-angle approximations, as will be
shown in Sect. 2.10, but the small angle limits of the symmetric Euler angles are
not as useful.

Separate procedures for the different axis sequences are generally used to find
the Euler angles representing a given attitude matrix. We will consider the 3�1�3
and 3�2�1 sequences as specific examples, and will follow these examples with a
general algorithm.

For the symmetric 3�1�3 sequence, the angle � is computed from the 33 element
of A313:

� D cos�1 .ŒA313�33/ (2.166)

Unless ŒA313�33 has magnitude unity, two distinct values of � have the same cosine,
corresponding to the two possible signs for sin � and to the twofold ambiguity shown
in Eq. (2.163). We are free to select either of these values, but we can avoid the
twofold ambiguity by computing � as the principal value of the inverse cosine,
which restricts its range to 0 � � �  and gives sin � � 0. If sin � ¤ 0, the
other two Euler angles can be determined, modulo 2 , by

� D atan2 .�ŒA313�31;��ŒA313�32/ (2.167a)

 D atan2 .�ŒA313�13; �ŒA313�23/ (2.167b)

where � D ˙1 is the sign of sin � and atan2.y; x/ is the standard function giving
the argument of the complex number x C iy.

It is obvious that � and  cannot be determined from Eqs. (2.167) if � is equal
to 0 or  , since these values give sin � D 0. The usual twofold ambiguity is absent
in these cases, but the attitude matrix takes the form

A313.�; . 	 /=2;  / D
2
4

cos.� ˙  / sin.� ˙  / 0

	 sin.� ˙  / ˙ cos.� ˙  / 0

0 0 ˙1

3
5 (2.168)

It can be seen that only the sum or difference � ˙  is determined, and not the
angles individually. This is known as gimbal lock, for reasons that will become
apparent when we discuss the kinematics of rotations. Gimbal lock is caused by
collinearity of the physical rotation axis vectors of the first and third rotations in
the sequence. Note that the column vector representations of the rotation axes are
always parallel for the symmetric Euler angle sequences, but that does not cause
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gimbal lock. Gimbal lock occurs for all the symmetric Euler angle sequences when
sin � D 0.

We could employ a special algorithm for the sin � D 0 case, but it is preferable
to develop a general algorithm for all values of � , because we could encounter a loss
of precision for small but nonzero values of sin � . To this end, we note that

ŒA313�11 ˙ ŒA313�22 D .1˙ c�/ cos.� ˙  / (2.169a)

ŒA313�12 	 ŒA313�21 D .1˙ c�/ sin.� ˙  / (2.169b)

and that .1˙c�/ is positive if cos � ¤ 	1. Therefore, we find either � or  , but not
both, from Eq. (2.167). If sin � D 0 we can set one of these angles to any convenient
value. Then we find the other angle from their sum or difference by

� C  D atan2 .ŒA313�12 � ŒA313�21; ŒA313�11 C ŒA313�22/ if ŒA313�33 � 0
(2.170a)

� �  D atan2 .ŒA313�12 C ŒA313�21; ŒA313�11 � ŒA313�22/ if ŒA313�33 < 0
(2.170b)

Extraction of the asymmetric Euler angles proceeds in a similar manner. For the
3�2�1 sequence, the angle � is computed from the 13 element of A321:

� D sin�1 .�ŒA321�13/ (2.171)

Unless ŒA321�13 has magnitude unity, two distinct values of � have the same sine,
corresponding to the two possible signs for cos � and to the twofold ambiguity
shown in Eq. (2.165). We are free to select either value, but can avoid the ambiguity
by computing � as the principal value of the inverse sine, restricting its range to
j� j � =2 and giving cos � � 0. If cos � ¤ 0, the other two angles can be
determined by

� D atan2
�
� 0ŒA321�12; � 0ŒA321�11

	
(2.172a)

 D atan2
�
� 0ŒA321�23; � 0ŒA321�33

	
(2.172b)

where � 0 D ˙1 is the sign of cos � .
Gimbal lock for the asymmetric Euler, or Tait-Bryan, sequences occurs when

cos � D 0, i.e. when � D 	=2. Then the usual twofold ambiguity is absent, and
the attitude matrix for the 3�2�1 example has the form

A321.�;	=2; / D
2
4

0 0 ˙1
� sin.� ˙  / cos.� ˙  / 0

	 cos.� ˙  / 	 sin.� ˙  / 0

3
5 (2.173)
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Only the sum or difference � ˙  is determined, just as for the symmetric Euler
axis sequence, again due to collinearity of the physical rotation axis vectors of
the first and third rotations. The column vector representations of the rotation axes
are always perpendicular for the asymmetric sequences, but that does not prevent
gimbal lock from occurring.

In parallel with the 3�1�3 case, we deal with gimbal lock by finding either � or
 from Eq. (2.172) and then the other from their sum or difference by

� C  D atan2 .�ŒA321�32 � ŒA321�21; ŒA321�22 � ŒA321�31/ if ŒA321�13 � 0
(2.174a)

� �  D atan2 . ŒA321�32 � ŒA321�21; ŒA321�22 C ŒA321�31/ if ŒA321�13 < 0
(2.174b)

We finally discuss the extraction of the angles for Davenport’s general axis
sequences. We will accomplish this in a way that uses the results obtained above for
extracting the 3�1�3 Euler angles. This technique can be applied to any sequence of
conventional Euler or Tait-Bryan angles, as well as to the general Davenport angles,
by selecting the rotation axes from the set of coordinate axes fe1; e2; e3g [19].

We note that the proper orthogonal matrix

C D
2
4

eT�
.e� � e� /T

eT�

3
5 (2.175)

has the property that C e� D e1 and C e� D e3. Then we have from Eq. (2.156)

CA.e�; e� ; e I�; �;  /CTD CA.e� ; �0/C TCA.e�; e� ; e� I�; � 0;  /C T

D A.e1; �0/CA.e�;  /C TC.e� ; � 0/C TCA.e�; �/C T

D A.e1; �0/A313.�; � 0;  / (2.176)

Thus we can extract �, � 0, and  from AT .e1; �0/CA.e�; e� ; e I�; �;  /CT by the
standard technique for the 3� 1� 3 sequence, and then compute � D � 0 C �0.
An easily-verified special case of Eq. (2.176) is

2
4
0 1 0

0 0 1

1 0 0

3
5A321.�; �;  /

2
4
0 �1 0
1 0 0

0 0 1

3
5 D A313.�; � C =2; / (2.177)

Explicit expressions for the Euler angles resulting from successive transforma-
tions have been found in some special cases [17], but they have not been widely
applied in practice.
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2.10 Attitude Error Representations

The attitude matrix represents the rotation ABR from some reference frame R to the
spacecraft body frame B . Attitude estimation errors can be represented either as a
small rotation A ORR between R and an estimated reference frame OR

ABR D AB ORA ORR (2.178)

or more commonly as a small rotation AB OB between B and an estimated body
frame OB

ABR D AB OBA OBR (2.179)

The estimated attitude is represented by AB OR in the former case and by A OBR in the
latter. In either case the matrix representing the errors, A ORR or AB OB , is expected to
be close to the identity matrix.

The most natural representation of attitude errors is in terms of the rotation
vector, Eq. (2.123), and its small-angle approximation

A.ı#/ D exp .�Œı#��/ � I3 � Œı#��C 1

2
Œı#��2 (2.180)

Other attitude parameterizations can be used to represent attitude errors, such as the
quaternion, Eq. (2.125),

A.ıq/ � I3 � 2Œıq1W3��C 2Œıq1W3��2 (2.181)

the Gibbs vector, Eq. (2.139),

A.ıg/ � I3 � 2Œıg��C 2Œıg��2 (2.182)

or the MRPs, Eq. (2.149),

A.ıp/ � I3 � 4Œıp��C 8Œıp��2 (2.183)

It is notable that these representations are all equivalent through second order in the
errors with the identification

ı# D 2ıq1W3 D 2ıg D 4ıp (2.184)

In fact, only the first-order approximation is required for most applications.
It must be emphasized that Eqs. (2.180)–(2.184) are only true in the (very useful)
approximation of small error angles. Attitude error representations are often used
for errors that are not especially small. In that case, the quaternion, Gibbs vector,
or MRP representation is often preferred to the rotation vector for computational
convenience.

The small-angle approximation of the Tait-Bryan or asymmetric Euler angle
representation, Eq. (2.161), is to second order
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Aijk.ı�; ı�; ı / �
�
I3 � ı Œek��C 1

2
ı 2Œek��2

�

�
�
I3 � ı�Œej��C 1

2
ı�2Œej��2

��
I3 � ı�Œei��C 1

2
ı�2Œei��2

�

� I3 � Œı#1��C 1

2
Œı#1��2 	 1

2
Œ.ı� ı ei � ı ı� ej C ı� ı � ek/��

(2.185)

where

ı#1 � ı� ei C ı� ej C ı ek (2.186)

The upper sign in the last term in Eq. (2.185), which was derived with the use of
Eq. (2.56c), holds if fi; j; kg is an even permutation of f1; 2; 3g, and the lower sign
applies if it is an odd permutation. With the identification ı# D ı#1 Eq. (2.185)
agrees with Eq. (2.180) to first order, but not to second order. Agreement to second
order would require

ı# D
�
ı� ˙ ı� ı 

2

�
ei C

�
ı� 	 ı ı�

2

�
ej C

�
ı ˙ ı�ı �

2

�
ek (2.187)

This identification has never been used to our knowledge, however, because first-
order approximations in the errors are generally adequate.

Problems

2.1. Prove that any real n � n matrix A can be decomposed into the sum of a
symmetric and skew symmetric matrix. Hint: the matrix A � AT is clearly skew
symmetric.

2.2. It is known that a general n � n symmetric matrix A must possess n mutually
orthogonal eigenvectors, even if some of the eigenvalues are repeated. Here, you will
prove that this is true when the eigenvalues are not repeated. Let A xi D 	ixi for
i D 1; 2, where 	i is the i th eigenvalue and xi is the i th eigenvector. Assume that
	1 ¤ 	2. Start by taking the transpose of A x1 D 	1x1 and right multiplying both
sides by x2, and prove that when A D AT the vectors x1 and x2 must be orthogonal.

2.3. Suppose that the characteristic equation of an n � n matrix A is given by

�.	/ D det.	In � A/ D 	n C a1	n�1 C � � � C an�1	C an
The Cayley-Hamilton theorem states that the matrix A obeys its characteristic
equation so that
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An C a1An�1 C � � � C AC anIn D 0

Multiplying by A gives

AnC1 C a1An C � � � C A2 C anA D 0

This implies that AnC1 can be written as a linear combination of A; A2; : : : ; An,
which in turn can be written as a linear combination of In; A; : : : ; An�1. In fact,
any Am with m > n � 1 can be written using the same linear combination. Use this
fact to compute a closed-form expression for the following:

2
4
1 0 4

0 0 1

0 �1 0

3
5
100

Note that f .A/ is the same linear combination of powers of A as f .J / is of powers
of J , where J is a diagonal matrix of the eigenvalues of A.

2.4. Consider the following 2 � 2 matrix for real a, b and d :

A D
�
a b

b d

�

Determine the eigenvalues 	1 and 	2 of A in terms of a, b and d . Since A is
symmetric then the eigenvalue/eigenvector decomposition gives

V TAV D
�
	1 0

0 	2

�

where V is an orthogonal matrix. Suppose that V is given by the form

V D
�
c s

�s c
�

where s � sin � and c � cos � for some angle � . Find c and s in terms of a, b
and d .

2.5. A matrix that is used to reflect an object over a line or plane is called a
reflection matrix. Consider the following natural basis, given by Eq. (2.35), for
n D 2:

e1 D
�
1

0

�
; e2 D

�
0

1

�
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Chief
Inertial Orbit

Deputy
Inertial Orbit

Chief

Deputy

Relative
Orbit

ro

ho

o

Fig. 2.8 Hill frame

Let � be the counterclockwise angle between some line ` through the origin and the
x-axis. Consider the following matrix that rotates the x-axis onto `:

A D
�

cos� � sin�
sin� cos�

�

Noting that A e1 lies on ` and A e1 is perpendicular to `, determine the reflection
matrix that sends any vector not on ` to its mirror image about `. Provide simulation
plots for various angles � and any chosen 2 � 1 vector to reflect.

2.6. Write a computer program that takes some latitude, longitude and height, and
converts these quantities to ECEF position using Eq. (2.74). Also, write a computer
program that takes ECEF position and converts it to latitude, longitude and height
using Eq. (2.77). Pick some latitude, longitude and height. Then compute the ECEF
position and convert this position to latitude, longitude and height to ensure that the
original quantities are obtained.

2.7. A useful frame for formation flying applications is the “Hill frame” shown
in Fig. 2.8 [6]. The frame is given by for ; o� ; ohg, where or points in the chief
spacecraft’s radial direction, oh is along the chief orbit momentum vector and o�
completes the right-handed coordinate system, so that

or D rI
krIk ; o� D oh � or ; oh D hI

khIk
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where hI D rI � vI . Using the dot product approach similar to Eq. (2.43), fully
derive the attitude matrix that rotates vectors from the Hill frame to an inertial frame.
Also, determine the relationship between the Hill frame and the LVLH frame.

2.8. This is an alternative proof of Euler’s Theorem that avoids eigenvalues [12].

a) First assume that the attitude matrix is not symmetric, i.e. that A ¤ AT . Define
the skew symmetric matrix S � 1

2
.A � AT / D Œs��. Prove that AS AT D S .

Next show that d � s=ksk is equivalent to the Euler axis e, to within a sign
ambiguity,

b) Now assume that A D AT . Why does the above argument fail in this case? If A
is symmetric the orthogonality relation is A2 D I3. Show that this gives A.AC
I3/ D AC I3, so all the columns of AC I3 are unchanged by A. Complete the
proof by showing that at least one of these columns is not a column of zeros, and
is therefore equivalent to the Euler axis e, to within a sign ambiguity. What Euler
angles of rotation, # , correspond to the case of A D AT ?

2.9. The generalized Rodrigues parameters [15] (GRPs) can be written as

� D f q1W3
aC q4

where a is a parameter from 0 to 1 and f is a scale factor.

a) Draw a plot of the rotation angle # verses a that causes the GPRs to become
singular.

b) Determine the inverse transformation for q1W3 and q4 in terms of �, a and f . Note
that your answer for q4 may seem to provide two solutions, but only one of them
is correct.

c) Determine f in terms of a so that the small angle approximation gives k�k � # .

2.10. Show that the square of the quaternion elements can be extracted from the
attitude matrix by using the following equations:

q21 D
1

4
.1C a11 � a22 � a33/

q22 D
1

4
.1C a22 � a11 � a33/

q23 D
1

4
.1C a33 � a11 � a22/

q24 D
1

4
.1C a11 C a22 C a33/

2.11. Derive the attitude matrix for a 1�2�3 sequence. Also, explicitly compute
the determinant of this matrix to show that it isC1.
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2.12. Derive the direct relationship from Euler angles to quaternion for a 1�2�3
sequence and for a 1�2�1 sequence. Compare your results to the ones shown in
Table 9.5 to make sure they are equivalent.
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Chapter 3
Attitude Kinematics and Dynamics

This chapter begins with a discussion of the kinematics of rotations, or attitude
kinematics, and then moves on to attitude dynamics. The distinction between
kinematics and dynamics is that kinematics covers those aspects of motion that can
be analyzed without consideration of forces or torques. When forces and torques
are introduced, we are in the realm of dynamics. To make this distinction clear,
consider the motion of a point particle in Newtonian physics. If r denotes position,
v denotes velocity, and time derivatives are indicated by a dot, then the kinematic
equation of motion is simply Pr D v. The dynamic equation of motion is mPv D F
or Pp D F, where F is the applied force and p � mPv is the translational momentum.
Kinematics and dynamics are often subsumed under the single term dynamics by
combining the kinematic and dynamic equations in the single relation mRr D F.
In fact, it is common in filtering theory to apply the term dynamics to any relation
expressing time dependence.

The role of the position vector r is taken in attitude kinematics by the attitude
matrixA or one of its parameterizations, and the role of the velocity v is taken by the
angular velocity !. The role of translational momentum p is played by the angular
momentum H. The kinematic and dynamic equations of rotational motion are not
as simple as those for translational motion. In particular, the angular momentum is
not a scalar multiple of the angular velocity in general.

We discuss attitude kinematics first, deriving equations for the time derivatives of
the attitude matrix and of its various parameterizations introduced in the previous
chapter. We also discuss the time derivatives of representations of a vector in frames
that undergo relative rotational motion.

Our treatment of dynamics begins by considering the separation of center-of-
mass motion from rotational motion, emphasizing the fundamental role played by
angular momentum. We next introduce the concept of a rigid body, an extremely
useful approximation for many spacecraft. We summarize the kinematic and
dynamic equations of motion and collect them in one place for easy reference, and
then analyze the torque-free motion of a rigid body. We follow this with discussions

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__3,
© Springer Science+Business Media New York 2014
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of the modeling of internal and external torques, which include both undesired
disturbance torques and deliberately applied control torques. Finally, we examine
the special case of Earth-pointing spacecraft.

3.1 Attitude Kinematics

We will discuss the kinematics of the attitude matrix first, since this is the
fundamental representation of a rotation. This discussion introduces the concept
of the angular velocity or angular rate vector. We then discuss the kinematics of
column vectors in rotating reference frames.

3.1.1 Attitude Matrix

The time dependence of the attitude matrix expressing the rotation from a frame F
to a frame G is given by the fundamental definition of a derivative as

PAGF .t/ � lim
�t!0

AGF .t C�t/ � AGF .t/
�t

D lim
�t!0

AGF .t C�t/AFG.t/ � I3
�t

AGF .t/ (3.1)

because AFG.t/AGF .t/ is equal to the identity matrix. As �t goes to zero, the
product AGF .t C �t/AFG.t/ differs from the identity matrix by a small rotation
that we can represent by a rotation vector,

AGF .t C�t/AFG.t/ D exp
��Œ�#GFG ��

	 � I3 � Œ�#GFG �� (3.2)

The higher-order terms omitted in the approximation go to zero faster than�t as�t
goes to zero. The � in front of # expresses the fact that this is a small rotation, the
superscriptGF means that it relates to the rotation from frameF to frameG, and the
subscript G means that the rotation vector is represented in the frame G. We know
that the rotation vector is represented in frame G because AGF .t C �t/AFG.t/ is
a rotation from frame G at one time to frame G at a different time, and these two
frames coincide in the limit that �t goes to zero. The kinematic relations do not
distinguish between the situations where frame F or frame G or both frames are
rotating in an absolute sense; they only care about the relative rotation between the
two frames. Substituting Eq. (3.2) into Eq. (3.1) gives

PAGF .t/ D lim
�t!0

�Œ�#GFG ��
�t

AGF .t/ D �Œ!GFG .t/��AGF .t/ (3.3)
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where the angular rate vector or angular velocity vector is defined by

!GFG .t/ � lim
�t!0

�#GFG
�t

(3.4)

The rotation vector is always specified in radians, so the units of the angular velocity
are rad/s, assuming that time is measured in seconds.

Equation (3.3) is the fundamental equation of attitude kinematics. We can also
write this, omitting the time arguments, as

PAGF D �AGFAFGŒ!GFG ��ATFG D �AGF ŒAFG!GFG �� D �AGF Œ!GFF �� (3.5)

which expresses the kinematics in terms of the components of !GF in frame
F instead of its components in frame G. Taking the transpose of Eq. (3.3) and
remembering that the cross-product matrix is skew-symmetric gives

PAFG D ATGF Œ!GFG �� D AFGŒ!GFG �� (3.6)

The frame labels are arbitrary, so we can exchange the labels F and G in this
expression to get

PAGF D AGF Œ!FGF �� (3.7)

Comparing with Eq. (3.5) establishes the identity

!FGF D �!GFF (3.8)

expressing the perfectly reasonable result that the rotational rate of frame F with
respect to frame G is the negative of the rate of frame G with respect to frame F .
Although we have derived this as a relationship of the components in frame F ,
the properties of orthogonal transformations show that it must be true for the
components in any frame.

The kinematic equations preserve the orthogonality of the attitude matrix because
the derivatives of AGFATGF D I3 and ATGFAGF D I3 are

PAGFATGF C AGF PATGF D �Œ!GFG ��I3 C I3Œ!GFG �� D 0 (3.9a)

PATGFAGF C ATGF PAGF D �Œ!FGF ��I3 C I3Œ!FGF �� D 0 (3.9b)

3.1.2 Vector Addition of Angular Velocity

The specialization of Eq. (2.47) for rotation matrices is

AHF D AHGAGF (3.10)
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Taking the time derivative of this equation gives

PAHF D �Œ!HFH ��AHF D PAHGAGF C AHG PAGF
D �Œ!HGH ��AHGAGF � AHGŒ!GFG ��AGF
D �fŒ!HGH ��C AHGŒ!GFG ��ATHGgAHF (3.11)

which means, by Eq. (2.63), that

!HFH D !HGH C AHG!GFG D !HGH C!GFH (3.12)

The first form of this equation is more useful in applications, but the second shows
that the angular velocity of the motion of frame H relative to frame F is just the
vector sum of angular velocity of the motion of H relative to G and the angular
velocity of the motion of G relative to F , provided that they are expressed in the
same reference frame. Equation (3.8) is a special case of this general result.

3.1.3 Vector Kinematics

Consider the representations of a vector x in two different frames:

xG D AGF xF (3.13)

The time derivative of this equation is

PxG D AGF PxF C PAGF xF D AGF PxF � Œ!GFG ��AGF xF

D AGF PxF �!GFG � xG (3.14)

This is a fundamental equation. It expresses the derivative PxG of a vector in one
frame, as seen in that frame, as the sum of two terms: the mapping by orthogonal
transformation of the derivative PxF in another frame, as seen in that frame, and
an “!�” term reflecting the rotational motion between the two frames. Note that
no judgement is made as to which frame is moving in an absolute sense; only the
relative rotation matters.

Differentiating Eq. (3.14) again gives

RxG D AGF RxF � Œ!GFG ��AGF PxF �!GFG � PxG � P!GFG � xG

D AGF RxF � Œ!GFG ��.PxG C!GFG � xG/ �!GFG � PxG � P!GFG � xG

D AGF RxF �!GFG � .!GFG � xG/ � 2!GFG � PxG � P!GFG � xG (3.15)

This equation is more useful for translational motion than for rotational motion.
The terms on the right side have special names when x is a position vector; the
second term is the centripetal acceleration, the third term is the Coriolis acceleration,
and the last term is sometimes called the Euler acceleration.



3.2 Kinematics of Attitude Parameterizations 71

3.2 Kinematics of Attitude Parameterizations

As discussed in Chap. 2, attitude simulation and attitude estimation usually employ
a representation of the attitude having fewer parameters and fewer constraints than
the attitude matrix. We will now derive the kinematic equations for several of
these parameterizations. Frame-specifying subscripts are omitted in this section
and in most of the book, unless they are necessary to avoid ambiguity. We always
understand the attitude rate vector relating to an attitude matrix AGF to be !GFG ,
unless explicitly indicated otherwise.

3.2.1 Quaternion Kinematics

The derivation of the kinematic equation for the quaternion is similar to that for the
attitude matrix. The derivative is

Pq.t/ � lim
�t!0

q.t C�t/ � q.t/
�t

(3.16)

We can use Eq. (2.127) to represent the rotation from q.t/ to q.t C �t/ as the
exponential of a rotation vector,

q.t C�t/ D expŒ.�#=2/˝�q.t/ � q.t/C Œ.�#=2/˝�q.t/ (3.17)

Inserting this into Eq. (3.16) and taking the limit as �t goes to zero gives

Pq.t/ D 1

2
Œ!.t/˝�q.t/ D 1

2
!.t/˝ q.t/ D 1

2
˝.!.t//q.t/ (3.18)

where the angular velocity vector is defined by Eq. (3.4). This result is very similar
to Eq. (3.3).

The fact that Œ!.t/˝� is a skew-symmetric matrix ensures that Eq. (3.18)
preserves the quaternion norm, because the derivative of kqk2 D 1 is

PqT qC qT Pq D
�
1

2
Œ!˝�q

�T
qC qT

�
1

2
Œ!˝�q

�

D 1

2

��qT Œ!˝�qC qT Œ!˝�q	 D 0 (3.19)

It is often more convenient to use Eqs. (2.84a) and (2.86) to write the kinematic
equation for the quaternion in the form

Pq D 1

2
qˇ! D 1

2
�.q/! (3.20)

where �.q/ is defined by Eq. (2.88). Then Eq. (2.89a) gives ! as a function of the
quaternion rate as

! D 2�T .q/ Pq (3.21)
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3.2.2 Rodrigues Parameter Kinematics

The kinematic equation satisfied by the Gibbs vector is most easily obtained from
the kinematic equation for the quaternion. Taking the time derivative of Eq. (2.136),
inserting Eq. (3.18) for the quaternion derivative, and then substituting Eq. (2.137)
gives

Pg D .1=2/ Œ!C g �!C .g �!/g � D .1=2/ �I3 C Œg��C ggT
	
! (3.22)

The inverse of this equation is

! D 2 �I3 C Œg��C ggT
	�1 Pg D 2 �1C kgk2	�1 .Pg � g � Pg/ (3.23)

3.2.3 Modified Rodrigues Parameter Kinematics

The kinematic equation for the modified Rodrigues parameters can also be obtained
from the kinematic equation for the quaternion. Taking the time derivative of
Eq. (2.144), inserting Eq. (3.18) for the quaternion derivative, and then substituting
Eq. (2.145) gives

Pp D .1=4/ �.1 � kpk2/!C 2p �!C 2.p �!/p �

D .1=4/ ˚.1 � kpk2/I3 C 2Œp��C 2ppT
�
!

D 1C kpk2
4

�
I3 C 2 Œp��

2 C Œp��
1C kpk2

�
! (3.24)

The matrix in parentheses in the last line of this equation is the transpose of the
matrix appearing in Eq. (2.149), which is orthogonal, so the inverse of the kinematic
equation for the MRPs is

! D 4

1C kpk2
�
I3 C 2 Œp��

2 � Œp��
1C kpk2

�
Pp

D 4 �1C kpk2	�2 �.1 � kpk2/ Pp � 2p � PpC 2.p � Pp/p � (3.25)

3.2.4 Rotation Vector Kinematics

The kinematic equation for the rotation vector # D e# is also most easily obtained
from the kinematic equation for the quaternion. Taking the time derivative of

# D 2.cos�1 q4/
q1W3
kq1W3k (3.26)
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and substituting Eq. (3.18) gives

P# D



q1W3qT1W3
kq1W3k2 C

cos�1 q4
kq1W3k3

�kq1W3k2I3 � q1W3qT1W3
	
.q4I3 C Œq1W3��/

�
! (3.27)

after replacing
q
1 � q24 by kq1W3k. We now substitute Eq. (2.124) for the quaternion,

use the identities eeT D Œe��2 C I3 and Œe��3 D �Œe��, and collect terms to yield
the desired kinematic equation

P# D !C 1

2
# �!C 1

#2

�
1 � #

2
cot

#

2

�
# � .# �!/ (3.28)

The coefficient of the last term is singular for # equal to any nonzero multiple of 2 ,
making the rotation vector parameterization unsuitable for numerical simulations.
This coefficient is difficult to evaluate numerically for # � 0, but it is nonsingular
in this limit, and expanding the cotangent in a power series leads to the small angle
approximation

P# � !C .1=2/# �!C .1=12/# � .# �!/ (3.29)

The inverse of Eq. (3.28) is

! D P# � 1 � cos#

#2
# � P# C # � sin#

#3
# � .# � P#/ (3.30)

This is easily verified with the use of the relation Œe��3 D �Œe�� and some
trigonometric identities.

3.2.5 Euler Angle Kinematics

The product rule for differentiation gives the time derivative of a generalized Euler
angle representation of a rotation, defined by Eq. (2.152), as

PA.e�; e� ; e I�; �;  / D PA.e ;  /A.e� ; �/A.e�; �/
CA.e ;  / PA.e� ; �/A.e�; �/C A.e ;  /A.e� ; �/ PA.e�; �/

(3.31)

which can be seen to be a specific application of the methods of Sect. 3.1.2.
Differentiating Eq. (2.109) and remembering that e� is constant gives

PA.e� ; �/ D P�.� cos � Œe���C sin �Œe���2/ D � P�Œe���A.e� ; �/ (3.32)
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Analogous relations hold for PA.e ;  / and PA.e�; �/, so

PA.e�; e� ; e I�; �;  / D � P Œe ��A.e ;  /A.e� ; �/A.e�; �/
� P�A.e ;  /Œe���A.e� ; �/A.e�; �/
� P�A.e ;  /A.e� ; �/Œe���A.e�; �/

D �f P Œe ��C P�A.e ;  /Œe���AT .e ;  /
C P�A.e ;  /A.e� ; �/Œe���AT .e� ; �/
�AT .e ;  /gA.e�; e� ; e I�; �;  / (3.33)

But we know that PA D �Œ!��A, so using Eq. (2.63) gives

! D P e C P�A.e ;  /e� C P�A.e ;  /A.e� ; �/e� (3.34)

where !, P , P� , and P� are expressed all in rad/s. This expression is intuitively
plausible. It expresses the total angular velocity as the sum of the components
P e , P� e� , and P� e� , all mapped into the frame into which A.e�; e� ; e I�; �;  /

transforms. The axis e is already in this frame, but e� and e� must be rotated by
the matrices A.e ;  / and A.e ;  /A.e� ; �/, respectively.

We have obtained an expression for the angular velocity as a function of the
Euler angle rates, but the inverse expression for the Euler angle rates in terms of the
angular velocity is more useful. Because e is not affected by the rotationA.e ;  /,
we can write Eq. (3.34) as

! D A.e ;  /Œ P e C P� e� C P�A.e� ; �/e�� D A.e ;  /M
2
4
P�
P�
P 

3
5 (3.35)

where M is the 3 � 3 matrix

M � �A.e� ; �/e� e� e 
� D �A.e� ; �/AT .e� ; �0/e e� e 

�

D �cos.� � �0/e Csin.� � �0/.e � e� / e� e 
�

(3.36)

We have used Eqs. (2.154), (2.155), and (2.117) in the above. The determinant of
M is

detM D Œcos.� ��0/e C sin.� ��0/.e �e� /� � .e� �e / D � sin.� ��0/ (3.37)

because e and e� are orthogonal. Equations (2.16) and (2.61) give the inverse of
Eq. (3.35) as

2
4
P�
P�
P 

3
5 DM�1AT .e ;  /! D B.�;  /! (3.38)
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where

B.�;  / � 1

sin.� � �0/

2
4

.e � e� /T

sin.� � �0/eT�
sin.� � �0/eT � cos.� � �0/.e � e� /T

3
5AT .e ;  /

(3.39)

Although hidden by the notation, B.�;  / also depends on e , e� , and e� , the last
implicitly through �0; but it is independent of �.

Equations (3.38) and (3.39) exhibit the gimbal-lock phenomenon; both P and P�
become infinitely large as sin.� � �0/ ! 0 unless the angular velocity vector ! is
orthogonal to A.e ;  /.e � e� /. Gimbal lock is a real physical phenomenon for
gimbaled platforms, where the Euler or Bryan-Tait angles are the actual physical
angles of the gimbal mechanisms, which clearly cannot attain infinite rates.

Using A.e ;  /e D e and A.e ;  /e� D cos e� � sin .e � e� / allows us
to express Eq. (3.39) as

B.�;  / D
2
4

csc.� � �0/Œcos .e � e� /C sin e� �T

cos eT� � sin .e � e� /T

eT � cot.� � �0/Œcos .e � e� /C sin e� �T

3
5 (3.40)

Now let us look at some specific examples of conventional Euler angle
sequences. The axes for the 3�1�3 sequence are e D e3, e� D e1, and e �e� D e2,
and �0 D 0, so Eq. (3.35) gives

! �
2
4
!1
!2
!3

3
5 D A.e3;  /

2
4
0 1 0

0 0 sin �
1 0 cos �

3
5
2
4
P 
P�
P�

3
5 D

2
4
P� sin � sin C P� cos 
P� sin � cos � P� sin 

P C P� cos �

3
5

(3.41)
and Eq. (3.40) gives

B.�;  / D
2
4

csc � sin csc � cos 0

cos � sin 0

� cot � sin � cot � cos 1

3
5 (3.42)

The axes for the 3�2�1 sequence are e D e1, e� D e2, and e � e� D e3, and
�0 D �=2, so Eq. (3.35) gives

! D A.e1;  /
2
4
1 0 � sin �
0 1 0

0 0 cos �

3
5
2
4
P 
P�
P�

3
5 D

2
4

P � P� sin �
P� cos � sin C P� cos 
P� cos � cos � P� sin 

3
5 (3.43)

and Eq. (3.40) gives

B.�;  / D
2
4
0 sec � sin sec � cos 
0 cos � sin 
1 tan � sin tan � cos 

3
5 (3.44)
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Expressions for B.�;  / and its inverse for all the conventional Euler and
Tait-Bryan representations can be derived in a parallel fashion, and explicit formulas
for them can be found in Chap. 9.

3.2.6 Attitude Error Kinematics

The analysis of attitude error kinematics uses the results of Sects. 2.10 and 3.1.2.
To first order in the attitude error, the angular velocity of the attitude error is given
by Eqs. (3.5) and (2.180) as

Œ!.ı#/�� D � PA.ı#/AT .ı#/ D Œı P#�� .I3 C Œı#��/ D Œı P#�� (3.45)

Thus we have simply !.ı#/ D ı P# .
Consider first the case where the attitude errors are defined in the spacecraft body

frame. Equation (2.179) gives ABR D AB OBA OBR, so Eq. (3.12) gives

!BRB D !B OB
B C AB OB !

OBR
OB (3.46)

In this case the attitude error rate is !.ı#B/ D !B OB
B D ı P#B , so we have

ı P#B D !BRB � AB OB !
OBR
OB D ! � AB OB O! (3.47)

where the second form uses the compact notation of ! for the true body rate, !BRB ,

and O! for the estimated body rate, ! OBR
OB . Inserting Eq. (2.180) for AB OB gives

ı P#B D ! � .I3 � Œı#B��/ O! D .! � O!/ � O! � ı#B (3.48)

The final form of this equation is the one most commonly applied. It appears to be
inconsistent because it involves the difference of ! and O!, which are referenced to
two different coordinate frames. Equation (3.47) shows that the attitude error rate
is really defined consistently; the apparent contradiction arises from inserting the
approximate form for AB OB . In fact, it is just this approximation that gives rise to
the O! � ı# term in the kinematic equation.

Now consider the case where the attitude errors are defined in the reference
frame. Equation (2.178) gives ABR D AB ORA ORR, so Eq. (3.12) gives

!BRB D !B OR
B C AB OR !

ORR
OR (3.49)

In this case the attitude error rate is !.ı#R/ D ! ORR
OR D ı P#R, so

ı P#R D ATB OR.!
BR
B �!B OR

B / D OAT .! � O!/ (3.50)

where in this case OA D AB OR is the estimated attitude and O! D !B OR
B is the estimated

body rate.
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The error kinematics in these two cases look quite different. Equations (3.47)
or (3.48) involves the attitude error, while Eq. (3.50) involves the attitude estimate.
The difference arises because either attitude dynamics or strapdown gyro measure-
ments give the components of the body rate in the spacecraft body frame. If the
attitude errors are specified in the body frame, there are two slightly different body
frames, the true frame and the estimated frame. If the attitude errors are specified in
the reference frame, on the other hand, there is only one body frame. The difference
between the two formulations is purely kinematic, it has nothing to do with either
frame being inertial or non-inertial.1

3.3 Attitude Dynamics

We now turn to attitude dynamics, emphasizing the fundamental role of angular
momentum. We begin by defining the center of mass of a collection of mass points
and showing how the rotational motion of this system can be treated separately from
the motion of the center of mass. We then specialize to the case of a rigid body,
defining the moment of inertia tensor and expressing the angular momentum and
rotational kinetic energy in terms of the moment of inertia and the angular velocity.
We collect the rotational equations of motion, kinematic and dynamic, in one place
for easy reference, and then discuss the torque-free motion of a rigid body. Then we
show how to include internal and external torques in the dynamics.

3.3.1 Angular Momentum and Kinetic Energy

We will consider a spacecraft (or anything else) to be made up of a collection of
n point masses. The angular momentum with respect to the origin 0 of an inertial
coordinate frame is defined in terms of the masses mi , positions ri0, and velocities
vi0 D Pri0 of the points relative to 0 by

H0 �
nX
iD1

ri0 �mivi0 (3.51)

Newton’s second law of motion tells us that mi Pvi0I D FiI in an inertial reference
frame, and vi0 � vi0 D 0, so the angular momentum obeys the equation

PH0
I D

nX
iD1

ri0I � FiI D
nX
iD1

ri0I �
0
@

nX
jD1

FijI C Fiext
I

1
A (3.52)

1The situation would be different if the gyros were used to stabilize a platform to serve as an
inertially fixed reference, but such platforms are now used only infrequently in space.
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Fig. 3.1 Center of mass, c, and two representative mass points

where Fij is the force exerted on mass point i by mass point j and Fiext is the
force exerted on i by everything external to the system of mass points.2 Any pair of
mass points with indices k and ` appears twice in the double sum over i and j , as
rk0I � Fk`I and as r`0I � F`kI . Newton’s third law of motion says that F`k D �Fk`, so
these two terms sum to .rk0I � r`0I / � Fk`I D rk`I � Fk`I . This geometry is illustrated
in Fig. 3.1. We assume that the force between two mass points acts along the line
between them, an assumption known as the strong law of action and reaction [10],
so the cross product vanishes and

PH0
I D

nX
iD1

ri0I � Fiext
I � L0I (3.53)

where L0I is the net torque about 0 exerted on the collection of mass points by all
the external forces.3 Note that internal forces give no contribution to the net torque.

We will now define the center of mass of the collection of mass points and prove
the important result that the motion of the center of mass and the motion of the mass
points about their center of mass are uncoupled. The location of the center of mass
c with respect to the origin 0 is defined as

rc0 �
 

nX
iD1

miri0
!,

M (3.54)

where M � Pn
iD1 mi is the total mass of the collection of mass points. It follows

from this definition that
nX
iD1

miric D
nX
iD1

mi .ri0 � rc0/ DM rc0 �M rc0 D 0 (3.55)

2We assume that Fi i , the force exerted by a mass point on itself, is zero.
3Warning! Many authors use the letter L to denote angular momentum.
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where these vectors are illustrated in Fig. 3.1. Using this result and its derivative,
the angular momentum about the arbitrary point 0 can be written as the sum of
the angular momentum about the center of mass and the angular momentum of the
center-of-mass motion, namely

H0 D
nX
iD1

mi .ric C rc0/ � .vic C vc0/ D
nX
iD1

miric � vic C rc0 �Mvc0

D Hc C rc0 �Mvc0 (3.56)

The net torque can similarly be expressed as

L0 D
nX
iD1
.ric C rc0/ � Fiext D

nX
iD1

ric � Fiext C rc0 �
nX
iD1

Fiext

D Lc C rc0 � F (3.57)

where F is the net external force on the collection of point masses. Now in an inertial
frame, we have FI D M Pvc0I , so substituting Eqs. (3.56) and (3.57) into Eq. (3.53)
and canceling the term due to motion of the center of mass gives Euler’s equation

PHc
I D LcI (3.58)

This is the fundamental equation of attitude dynamics. It is important to note that
this result holds even if the center of mass undergoes acceleration, as it usually does.
Equation (3.58) only holds in a non-rotating frame, however.4

The separation into contributions from center-of-mass motion and motion about
the center of mass also holds for the kinetic energy. We have

E0
k �

1

2

nX
iD1

mikvi0k2 D 1

2

nX
iD1

mi .vic C vc0/ � .vic C vc0/

D 1

2

nX
iD1

mikvick2 C 1

2
Mkvc0k2 D Ec

k C
1

2
Mkvc0k2 (3.59)

The derivative of the kinetic energy is

PE0
k D

nX
iD1

mivi0I � Pvi0I D
nX
iD1
.vicI C vc0I / � FiI D

nX
iD1

vicI � FiI C vc0I � FI (3.60)

The internal forces cancel in the vc0I � FiI sum due to the weak form of Newton’s
third law of motion, i.e. this cancelation does not require the force between two
mass points to be along the line joining them. The internal forces do not cancel in

4This is discussed in Sect. 2.6.2.
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the other term, though. This means that internal forces cannot affect the energy of
center-of-mass motion, but they can modify the energy of rotation about the center
of mass. It is apparent that the last term of Eq. (3.60) is equal to the derivative of the
last term of Eq. (3.59), from which it follows that

PEc
k D

nX
iD1

vicI � FiI (3.61)

3.3.2 Rigid Body Dynamics

A rigid body is defined by the existence of a reference frame, called the body frame
B in which all the vectors ricB are constant. The body frame is not unique; any
frame related to it by a constant orthogonal transformation is also a body frame.
The constancy of the vectors in the body frame and Eq. (3.14) allow us to obtain the
velocity of a mass point in the inertial frame as

vicI D PricI D AIB PricB �!IBI � ricI D !BII � ricI (3.62)

where we have used Eq. (3.8) to obtain the last form. Substituting this into Eq. (3.56)
gives

Hc
I D

nX
iD1

miricI � vicI D
nX

iD1

miricI � .!BII � ricI / D �
nX

iD1

mi ŒricI ��2!BII D J cI !BII
(3.63)

The last equality defines the representation in the frame I of the symmetric 3 � 3
matrix J cI known as the moment of inertia tensor, or MOI.5 The MOI in Eq. (3.63)
is specific to frame I , but we can define it in a general frame by

J c � �
nX
iD1

mi Œric��2 D
nX
iD1

mi

�krick2I3 � ric.ric/T
�

(3.64)

which defines the MOI in the frame in which the vectors ric are represented,
whatever that frame is. In fact the MOI is almost always expressed in the body
frame

J cB D �
nX
iD1

mi ŒricB��2 D
nX
iD1

mi

�kricB k2I3 � ricB .r
ic
B /

T
�

(3.65)

5The MOI is more specifically a second-rank tensor, which means that it transforms by Eq. (2.52)
under reference frame transformations. This follows directly from the fact that ricB D ABI ricI .



3.3 Attitude Dynamics 81

because it is constant in that frame. The angular momentum in the body frame is
given, using Eqs. (2.52) and (2.42), by

Hc
B D ABIHc

I D ABIJ cI !BII D ABIJ cI ATBIABI!BII D J cB !BIB : (3.66)

The parallel axis theorem can be used to find the MOI of a rigid body about an
arbitrary point p in terms of its MOI about its center of mass:

J p D
nX
iD1

mi

�kripk2I3 � rip.rip/T
�

D
nX
iD1

mi

�k.ric C rcp/k2I3 � .ric C rcp/.ric C rcp/T
�

DM �krcpk2I3 � rcp.rcp/T
�C J c (3.67)

with Eq. (3.55) causing the other terms in the sum to vanish. This allows us to
express the MOI of a large body in terms of the MOIs of m subassemblies as

J c D
mX
kD1

˚
Mk

�krckck2I3 � rckc.rckc/T
�C J ck� (3.68)

where c is the center of mass of the whole system and Mk , ck , and J ck denote the
mass, location of the center of mass, and MOI about ck of the kth subassembly. This
is the method used to compute MOIs in practice, where the subassemblies can be
structural elements, electronics boxes, reaction wheel assemblies, star trackers, etc.
The MOIs of the subassemblies can be directly measured or they can be computed
by breaking the subassemblies down into sub-subassemblies.

The matrix elements of the MOI tensor are given explicitly by

ŒJ c�11 D
nX
iD1

mi

�
.ric2 /

2 C .ric3 /2
�

(3.69a)

ŒJ c�22 D
nX
iD1

mi

�
.ric3 /

2 C .ric1 /2
�

(3.69b)

ŒJ c�33 D
nX
iD1

mi

�
.ric1 /

2 C .ric2 /2
�

(3.69c)

ŒJ c�k` D �
nX
iD1

mi r
ic
k r

ic
` ; for k ¤ ` (3.69d)
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The off-diagonal elements, ŒJ c�k`, or their negatives, �ŒJ c�k`, are often referred to
as the products of inertia.6

Being a real symmetric 3 � 3 matrix, the MOI tensor has three orthogonal
eigenvectors ekB and three real eigenvalues Jk satisfying the relation

J cBekB D JkekB; for k D 1; 2; 3 (3.70)

The unit vectors ekB are called the principal axes and the scalars Jk are known as
the principal moments of inertia. The transformation of the MOI tensor from an
arbitrary body frame to the principal axis frame is given by

ATBP J
c
BABP D J cP D diag .ŒJ1 J2 J3 �/ (3.71)

where ABP D Œe1B e2B e3B �. In the principal axis frame Eq. (3.69) has the form

J1 D
nX
iD1

mi

�
.ricP 2/

2 C .ricP 3/2
�

(3.72a)

J2 D
nX
iD1

mi

�
.ricP 3/

2 C .ricP1/2
�

(3.72b)

J3 D
nX
iD1

mi

�
.ricP1/

2 C .ricP 2/2
�

(3.72c)

0 D
nX
iD1

mi r
ic
Pk r

ic
P `; for k ¤ ` (3.72d)

The sum in the last of these equations must have balancing positive and negative
contributions, expressing the intuitive idea that the mass is distributed symmetrically
about the principal axes. In particular, any axis of rotational symmetry of a mass
distribution is a principal axis. The first three equations show that the principal
moments are all positive, unless the mass is all concentrated on a mathematical
straight line, which is impossible for a real physical body. It can also be seen from
these equations that the principal moments of inertia satisfy the triangle inequalities

Jk � J` C Jm (3.73)

where equality holds only if all the mass is concentrated in the ` � m plane, and
where k, `, and m are any permutation of the indices 1; 2; 3.

6Be warned that notation varies. The majority of authors use I for the MOI, but we reserve this
notation for the identity matrix. Some denote our Jkk by Ikk and our Jk` for k ¤ ` by �Ik`, but
this unfortunate notation should be shunned.
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It also follows from this analysis that the MOI tensor of any real physical body
has an inverse in any body frame, and we can write Eq. (3.66) as

!BIB D .J cB/�1Hc
B (3.74)

Implicit in Eqs. (3.66) and (3.74) is the key fact that the angular momentum and
angular velocity of a rigid body are parallel if and only if the body rotates about a
principal axis.

The rotational kinetic energy of a rigid body can also be expressed in terms of
the MOI tensor. Substituting Eq. (3.62) into Eq. (3.59) gives

Ec
k D

1

2

nX
iD1

mikvick2 D 1

2

nX
iD1

mi .!
BI
I � ricI /

T .!BII � ricI /

D 1

2

nX
iD1

mi

�
ŒricI ��!BII

	T �
ŒricI ��!BII

	 D 1

2
.!BII /

T J cI !
BI
I (3.75)

The rotational kinetic energy can be computed in any frame F by

Ec
k D

1

2
.!BIF /

T J cF !
BI
F D

1

2
!BIF �Hc

F D
1

2
.Hc

F /
T .J cF /

�1 Hc
F (3.76)

The time derivative of Eq. (3.75) is, with Eqs. (3.63) and (3.58),

PEc
k D .!BII /T J cI P!BII D !BII � LcI D !BIB � LcB (3.77)

showing that only external torques can modify the energy of rotation of a rigid body
about its center of mass. This can be seen more explicitly by substituting Eq. (3.62)
into Eq. (3.61), giving

PEc
k D

nX
iD1
.!BII � ricI / �

0
@

nX
jD1

FijI C Fiext
I

1
A D !BII � LcI (3.78)

The sum over the internal forces FijI vanishes for the same reason that the
corresponding sum in Eq. (3.52) gave zero contribution, and the final equality
follows from applying Eqs. (2.56a) and (3.57).

We can now collect in one place the basic equations needed to model the attitude
motion of a rigid body. We will assume that the attitude is parameterized by a
quaternion, but any other representation could be used instead:

PHc
I D LcI (3.79a)

Hc
B D A.qBI /Hc

I (3.79b)
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!BIB D .J cB/�1Hc
B (3.79c)

PqBI D 1

2
!BIB ˝ qBI (3.79d)

The external torques are often more easily computed in the body frame, so Eq. (3.14)
is often employed to replace the first two of these equations by

PHc
B D LcB �!BIB �Hc

B (3.80)

A further reduction in the number of equations can be achieved by combining the
above equation with Eq. (3.66) to obtain Euler’s rotational equation

P!BIB D .J cB/�1
�
LcB �!BIB � .J cB !BIB /

�
(3.81)

This equation and a kinematics equation, such as the quaternion kinematics
equation, provide a complete description of the motion of a rigid body.

Use of the principal axis reference frame is generally not especially advantageous
for numerical integration of the equations of motion, since a computer can easily
deal with a full 3 � 3 inertia tensor. The principal axis frame is almost invariably
employed for analytical studies of attitude motion, however, and we will use it in
the next subsection.

3.3.3 Rigid Body Motion

We now begin a discussion of the motion produced by the rigid body dynamic and
kinematic equations. This section will consider the qualitative aspects of the motion,
without solving the kinematic and dynamic differential equations explicitly. Then
Sect. 3.3.4 will discuss in detail the solutions in the absence of torques. We will
simplify the notation by omitting the superscript c, with the understanding that we
always treat motion with respect to the center of mass unless explicitly indicated
otherwise. We will denote the components of HB in a principal axis frame by
H1;H2;H3 and the components of !BIB by !1; !2; !3. There are many discussions
of rigid body motion in the literature, including notable ones by Goldstein [10],
Kaplan [17], Markley [20], and Hughes [14].

3.3.3.1 Spin Stabilization

Equation (3.58) tells us that HI is constant if there are no external torques. This
has led to the technique of spin stabilization of spacecraft. The basic idea is to
stabilize the pointing direction of one axis by spinning the spacecraft about that axis.
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If a torque of magnitudeL transverse to the direction of the spin angular momentum
acts on a spinning spacecraft, the change in angular momentum over a time interval
�t will be

k�HIk D L�t � H�# (3.82)

whereH is the magnitude of the angular momentum and�# is the angle (measured
in radians) over which it rotates. It is clear that a larger amount of angular
momentum will result in a smaller angular motion for a given level of disturbance
torque. Spin stabilization was widely employed early in the space program, then
was largely displaced by active control methods, but has made a comeback in the
era of microsatellites and nanosatellites.

It is important for spin stabilization that the angular momentum also have a
constant direction in the body frame. Equation (3.80) says that this will be the
case if !BIB � HB D 0, which requires the rotation axis to be a principal axis of
the inertia tensor. Thus we want the spacecraft to rotate about a principal axis. If the
spacecraft spins about a principal axis, but this does not align precisely with the
desired pointing axis, coning results, with the pointing axis rotating at the spin
rate around a cone centered on the inertially fixed angular momentum. The only
way to eliminate coning is to carefully balance the spacecraft. This is generally
accomplished by adding balance weights before launch similar to balancing an
automobile tire, but some spacecraft have carried movable weights into orbit to
allow compensation for inertia shifts caused by launch forces or to provide better
balance than can be measured on the ground.

If the angular momentum is not perfectly aligned with a principal axis of inertia,
the angular momentum will not be constant in the body frame. The resulting motion
of the angular momentum, and of the angular velocity, is called nutation.7 For
torque-free motion, kHBk D kHIk � H is constant during nutation, so the angular
momentum vector moves on the surface of a sphere of radius H in the body frame.

Investigating the stability of the motion for angular velocity close to, but not
exactly on, a principal axis shows that all principal axes are not created equal for
the purpose of spin stabilization. We will see that spin stabilization should always
be about the principal axis with the largest or smallest principal moment of inertia,
known as the major or minor principal axis, respectively, with a strong preference
for the major principal axis. If there are no torques, the component form of Eq. (3.80)
in the principal axis frame is

PH1 D .J�1
3 � J�1

2 /H2 H3 D Œ.J2 � J3/=.J2J3/�H2 H3 (3.83a)

PH2 D .J�1
1 � J�1

3 /H3 H1 D Œ.J3 � J1/=.J3J1/�H3 H1 (3.83b)

PH3 D .J�1
2 � J�1

1 /H1 H2 D Œ.J1 � J2/=.J1J2/�H1 H2 (3.83c)

7This is the usual aerospace meaning of the term nutation; it is used quite differently in other
applications of classical mechanics to refer to a wobbling or nodding motion.
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Fig. 3.2 Constant energy paths on the angular momentum sphere. (a) Axisymmetric inertia ratios
J1 W J2 W J3 D 4 W 4 W 6. (b) Triaxial inertia ratios J1 W J2 W J3 D 3 W 4 W 6

We will choose the spin axis to be close to the e3 axis for the purpose of the following
argument, which means that H1 and H2 are both much less than H3. Thus their
product on the right side of Eq. (3.83c) is negligibly small, and we can approximate
H3 as being constant. Then differentiating Eq. (3.83a) and substituting Eq. (3.83b)
gives

RH1.t/ D Œ.J2 � J3/.J3 � J1/=.J1J2/�.H3=J3/
2H1.t/ (3.84)

If J3 is the largest or smallest principal moment, the product .J2 � J3/.J3 � J1/
is negative, resulting in a periodic motion of H1. Then Eq. (3.83a) shows that H2

also undergoes periodic motion with the same period. This is nutation about the e3
axis. The product .J2 � J3/.J3 � J1/ is positive if J3 is intermediate between J1
and J2, however, and H1 and H2 both grow exponentially.8 Thus rotation about an
intermediate principal axis is inherently unstable. It is also possible that J3 is equal
to one of the other principal moments. If J3 D J1, for instance, then Eq. (3.83b)
tells us thatH2 is exactly constant, and Eq. (3.83a) says thatH1 grows linearly with
time. This motion is also unstable, although not exponentially unstable.

This behavior is illustrated in Fig. 3.2a,b, which show the torque-free motion of
HB on the sphere of radiusH for two different inertia tensors. The rotational kinetic
energy in a principal axis frame is given by

2Ek D H2
1 =J1 CH2

2 =J2 CH2
3 =J3 (3.85)

8Exponential growth continues until the right side of Eq. (3.83c) is no longer negligible.
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For a given angular momentum magnitude, the kinetic energy is restricted to the
range

H2=Jmax � 2Ek � H2=Jmin (3.86)

where Jmin and Jmax are the minimum and maximum principal moments of inertia.
Conservation of energy confines the motion of HB to a path on the sphere and
Fig. 3.2a,b show these paths for energy levels with even spacing 0:025H2=Jmax

in the range allowed by Eq. (3.86).
We will first discuss the simpler axially symmetric, or axisymmetric case, with

two principal moments equal. We will take e3 to be the axis of symmetry of the
inertia tensor in this case, which is shown in Fig. 3.2a. The axes e1 and e2 are not
shown on the figure because they can be any two axes in the equatorial plane that
form a right-handed orthogonal triad with e3. With J1 D J2 � Jt , where the
subscript t denotes “transverse,” Eq. (3.85) becomes

2Ek D .H2
1 CH2

2 /=Jt CH2
3 =J3 (3.87)

It follows that

H3 D ˙
�
J3.H

2 � 2JtEk/
J3 � Jt

�1=2
(3.88a)

Ht �
�
H2
1 CH2

2

�1=2 D
�
Jt .2J3Ek �H2/

J3 � Jt
�1=2

(3.88b)

This shows that nutation of an axisymmetric body is motion of the angular
momentum vector in the body frame along circles of constant radius Ht a constant
distance of H3 above or below the equatorial plane, as shown in Fig. 3.2a. This
extends the analysis of Eq. (3.84) to nutation with any allowable magnitude about
the major or minor principal axis˙e3. The figure also shows that there are no small
nutation paths close to the e1 � e2 plane.

Figure 3.2b illustrates the triaxial case, where no two principal moments are
equal. We have labeled the principal axes for this discussion so that J1 < J2 < J3.
The paths followed by nutational motion about the major and minor axes are not
simple circles in this case; their exact form will be found in Sect. 3.3.4. We see that
there is no stable motion about the intermediate axis ˙e2 in this case. Instead, we
find motion along two great circles passing through e2. They are called separatrices,
because they separate nutational motion about ˙e1 from nutational motion about
˙e3. The separatrices are the curves for 2Ek D H2=J2, so they satisfy the equation

.H2
3 CH2

2 CH2
1 /=J2 D H2

1 =J1 CH2
2 =J2 CH2

3 =J3 (3.89)

which gives

H3

H1

D
�
J3.J2 � J1/
J1.J3 � J2/

�1=2
(3.90)



88 3 Attitude Kinematics and Dynamics

Fig. 3.3 William Pickering, James Van Allen, and Wernher von Braun holding a Full-Scale Model
of Explorer 1. Source: NASA

3.3.3.2 Energy Dissipation

We have seen that stable rotation is possible around either a major or minor principal
axis of inertia. However, internal forces in a body that is not completely rigid can
lead to energy dissipation. If external torques are absent, HI will be constant, but
the rotational energy will decrease to its minimum value of H2=Jmax, resulting in
stable rotation about a major principal axis. If the intended spin axis is a minor
axis, energy dissipation will result in flat spin, an undesirable rotation about an axis
perpendicular to the preferred axis. A famous example of this is the pencil-shaped
Explorer 1, the first Earth satellite successfully launched by the United States, which
was intended to spin about its longitudinal axis. Its entry into flat spin was attributed
to energy dissipation in the flexible turnstile antenna array, comprising the four wires
attached to the fuselage just aft of Wernher von Braun’s right hand in Fig. 3.3 [5].

Steady spin about the major principal axis is commonly the desired outcome,
with spin-stabilized spacecraft designed to be more nearly disc-shaped than pencil-
shaped; and passive nutation dampers are often placed on these spacecraft to
produce this result. For triaxial inertia, energy dissipation can result in motion
starting with increasing nutation about ˙e1, then crossing one of the separatrices,
followed by decreasing nutation about either e3 or �e3, depending on where a
separatrix is crossed. Because HI is fixed in the inertial frame, these two outcomes
result in the pointing axis being oriented in opposite directions in inertial space.
It is usually the case that only one of these pointing directions is satisfactory, which
requires careful control of the energy damping to ensure the correct crossing of the
separatrix.
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3.3.3.3 Poinsot’s Construction

The discussion up to this point has not provided a picture of the motion in the inertial
frame. Poinsot’s construction supplies this picture by focusing on angular velocity
rather than angular momentum [10, 14, 17]. Conservation of energy in torque-free
motion restricts angular velocity to the surface of the inertia ellipsoid defined by

2Ek D .!BIB /T JB !BIB D J1!21 C J2!22 C J3!23 (3.91)

with semimajor axes of length
p
2Ek=J1;

p
2Ek=J2;

p
2Ek=J3. A small change

�! in the angular velocity would result in an energy change

�Ek D .!BIB /T J cB �! D HB ��! (3.92)

which is zero if �! is perpendicular to the angular momentum. Changes �! that
do not change Ek are in the plane tangent to the inertia ellipsoid, leading to the
conclusion that the normal to the inertia ellipsoid at any !BIB is in the direction of
the angular momentum HB D JB!BIB .

Each closed path on the momentum sphere illustrated in Fig. 3.2a or b maps onto
a closed path called a polhode on the inertia ellipsoid. As the angular velocity moves
along the polhode, the inertia ellipsoid (which is fixed in the rigid body) moves in
such away that the normal to its surface at the position of the instantaneous angular
velocity maintains a fixed direction (that of HI ) in inertial space. But Poinsot tells
us more. Writing the energy equation in the form 2Ek D !BII � HI reveals that the
component of !BII parallel to HI has the constant value 2Ek=H . Thus the tip of
the vector !BII always lies in a fixed plane normal to HI at a distance of 2Ek=H
from the center of the inertia ellipsoid. The path followed by the angular velocity in
this invariant plane is called the herpolhode. Thus the inertia ellipsoid rolls on the
invariant plane with its center at a fixed point a distance 2Ek=H above the plane and
with the tip of the angular velocity vector as the point of contact. Since the angular
velocity is the instantaneous axis of rotation, there is no slippage at the contact
point, and Poinsot’s construction can be succinctly summarized by the statement that
the polhode rolls without slipping on the herpolhode lying in the invariant plane.9

Goldstein [10], Kaplan [17], and Hughes [14] have pictures illustrating Poinsot’s
construction.

Poinsot’s construction is not especially easy to visualize, and there is a simpler
picture for the familiar axial symmetry case. In any case, we now turn to analytic
solutions of the equations of motion, which are often more useful than pictures for
estimation and control applications.

9A statement aptly characterized by Goldstein [10] as “jabberwockian.”
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3.3.4 Torque-Free Motion of a Rigid Body

Analytic solutions of the rigid body equations of motion are customarily expressed
in terms of angular velocity rather than angular momentum. Thus we will consider
the component form of Eq. (3.81) in the principal axis frame in the absence of
torques:

P!1.t/ D Œ.J2 � J3/=J1� !2.t/ !3.t/ (3.93a)

P!2.t/ D Œ.J3 � J1/=J2� !3.t/ !1.t/ (3.93b)

P!3.t/ D Œ.J1 � J2/=J3� !1.t/ !2.t/ (3.93c)

As we saw in Sect. 3.3.3, the rate of rotation about one of the principal axes is
constant if the moments of inertia about the other two principal axes are equal. We
will treat this simpler case of axial symmetry first, and then turn to the case of a
triaxial inertia tensor.

3.3.4.1 Axial Symmetry

Taking e3 to be the axis of symmetry of the inertia tensor, we have

P!1.t/ D .1 � J3=Jt / !2.t/ !3.t/ (3.94a)

P!2.t/ D �.1 � J3=Jt / !3.t/ !1.t/ (3.94b)

P!3.t/ D 0 (3.94c)

This means that !3 is constant, so we can omit the time argument. Note that !3 is
exactly constant for axial symmetry, as opposed to its approximate constancy in the
stability analysis of Sect. 3.3.3. It follows from Eq. (3.88a) that

!3 D H3

J3
D ˙

�
H2 � 2JtEk
J3.J3 � Jt /

�1=2
(3.95)

Differentiating Eq. (3.94a) and substituting Eq. (3.94b) gives

R!1.t/ D �.1 � J3=Jt /2!23 !1.t/ (3.96)

which has the solution

!1.t/ D !t sin. 0 C !pt/ (3.97)

where  0 is a constant initial phase,

!p � .1 � J3=Jt /!3 (3.98)
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and, from Eq. (3.88b),

!t D Ht

Jt
D
�
2J3Ek �H2

Jt .J3 � Jt /
�1=2

(3.99)

Then !2.t/ is given by Eq. (3.94a) as

!2.t/ D !t cos. 0 C !pt/ (3.100)

The angular rate !p is called the body nutation rate because it is the rate at which
the angular velocity vector rotates about the symmetry axis in the body frame. Note
that !p has the same sign as !3 if Jt > J3 and the opposite sign if Jt < J3.
If Jt D J3, there is no nutation, only steady rotation, since all axes are principal
axes in that case. The angular momentum rotates about the symmetry axis in the
body frame at the same rate, because the three vectors H;!, and e3 are coplanar in
the case of triaxial symmetry, as is easily seen from the relation

H D Jt
2
4
!1
!2
0

3
5C J3

2
4
0

0

!3

3
5 D Jt!C .J3 � Jt /!3e3 (3.101)

The speed at which the angular momentum vector moves over the sphere of
radius H in the body frame can also be computed by

k PHBk2 D k!BIB �HBk2 D H2k!BIB k2 � .!BIB �HB/
2 D H2k!BIB k2 � .2Ek/2

(3.102)

Substituting Eqs. (3.95), (3.99), (3.97) and (3.100) and performing some straight-
forward algebra gives

k PHBk D j.J3 � Jt /!t!3j D Ht j!pj (3.103)

It is easy to see that these equations give k PHBk D 0 for rotation about a principal
axis, for which either !t or !3 is zero.

By using the addition formulas for the sine and cosine, we can express the
transverse components of the angular velocity in terms of their initial values:

!1.t/ D !01 cos!pt C !02 sin!pt (3.104a)

!2.t/ D !02 cos!pt � !01 sin!pt (3.104b)

where !01 D !t sin 0 and !02 D !t cos 0.
We must now solve the kinematic equations of motion in order to have a complete

mathematical description of the torque-free motion. We will follow the almost
universal practice for torque-free motion of specifying the attitude by 3�1�3 Euler
angles. This gives us three first-order equations to integrate, which would lead to
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three constants of integration in addition to the three we have already found:H;Ek ,
and  0. Two of these constants can be thought of as specifying the fixed direction
of HI , and we eliminate these by choosing the inertial reference frame with its
third axis in the direction of HI . Then the angular momentum in the body frame is
given by

HB D
2
4
Jt!1
Jt!2
J3!3

3
5 D ABIHI D A313.�; �;  /

2
4
0

0

H

3
5 D H

2
4

sin sin �
cos sin �

cos �

3
5 (3.105)

where Eq. (2.162) provides the last equality. We immediately see that the nutation
angle � has constant value between 0 and  given by

� D cos�1.J3 !3=H/ (3.106)

and comparison of the first two components of Eq. (3.105) with Eqs. (3.97)
and (3.100) shows that

sin � D Jt !t=H � 0 (3.107)

and

 D  0 C !pt (3.108)

up to an irrelevant multiple of 2 . This explains our choice of the notation  0 in
Eq. (3.97). The third Euler angle is found by integrating Eq. (3.38) using Eq. (3.42):

P� D csc �.!1 sin C !2 cos / D !t csc � D H=Jt � !` (3.109)

so that

� D �0 C !`t (3.110)

The angular rate !` is called the inertial nutation rate because it is the rate at which
the angular velocity vector and the symmetry axis of the rigid body rotate about the
fixed angular momentum vector in the inertial frame. Equation (3.98) can be used
to write Eq. (3.101) as

! D H=Jt C .1 � J3=Jt /!3e3 D H=Jt C !pe3 (3.111)

This shows that the angular velocity in the axisymmetric case can be expressed as
the sum of two (nonorthogonal) vectors of magnitude !` and !p .

We complete the analysis of axisymmetric motion by finding the components of
the angular velocity in the inertial frame. These are given by
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!BII D AIB!BIB D AT313.�; �;  /
2
4
!1
!2
!3

3
5

D A.e3;��/A.e1;��/A.e3;� /
2
4
!t sin 
!t cos 
!3

3
5 (3.112)

Performing the matrix multiplications and applying Eqs. (2.108), (3.106),
and (3.107) gives

A.e1;��/A.e3;� /
2
4
!t sin 
!t cos 
!3

3
5 D A.e1;��/

2
4
0

!t
!3

3
5

D
2
4

0

!t cos � � !3 sin �
!3 cos � C !t sin �

3
5 D 1

H

2
4

0

.J3 � Jt /!t!3
2Ek

3
5 (3.113)

Thus the component of!BII parallel to HI has the constant value 2Ek=H , as we saw
in our discussion of Poinsot’s construction; and the component transverse to HI has
a magnitude agreeing with Eq. (3.103) and rotates around a circular herpolhode at
the inertial nutation rate.

We now present a pictorial view of this motion, which is the specialization
of Poinsot’s construction to the axisymmetric case. The angular velocity vector
precesses at rate !` and at an angle � from the angular momentum vector around
a space cone fixed in the inertial frame. At the same time, the angular velocity
vector precesses at rate !p and at an angle ˇ from the e3 axis around a body cone
fixed in the body frame. These cones are illustrated in Fig. 3.4a for the prolate case
and in Fig. 3.4b for the oblate case.10 The cones are tangent at the angular velocity
because H;!, and e3 are coplanar, and there is no slippage along the line of tangency
because that is the axis around which the rotation takes place. Thus, as viewed from
the inertial frame, the body cone (and the spacecraft which is fixed to it) rolls without
slipping around the fixed space cone; while, as viewed from the body frame, the
space cone (and the universe which is fixed to it) rolls without slipping around the
fixed body cone.

The body cone angle ˇ obeys

cosˇ D !3=k!k and sinˇ D !t=k!k (3.114)

10The figure illustrates the case of !3 > 0, but a corresponding figure for !3 < 0 shows that all the
discussion of this section holds in that case also.
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H

e3

H

e3

a b

Fig. 3.4 Torque-free motion of an axisymmetric rigid body. (a) Prolate rigid body J3 < Jt .
(b) Oblate rigid body J3 > Jt

and comparison with Eqs. (3.106) and (3.107) shows that the space cone rolls on the
outside of the body cone for a prolate rigid body and on the inside for an oblate body,
as shown in the figure. This explains why !p has the same sign as !3 in the prolate
case and the opposite sign in the oblate case, in agreement with Eq. (3.98). Finally,
we note from the figure that ˛, the angle between H and !, is equal to j� � ˇj. This
relation can be verified algebraically by applying Eqs. (3.106), (3.107) and (3.114)
to get

Hk!k.cosˇ cos � C sinˇ sin �/ D 2Ek D H �! D Hk!k cos˛ (3.115)

3.3.4.2 Triaxial Symmetry

We will designate the intermediate principal moment of inertia by J2 in the triaxial
case. We saw in the discussion of Fig. 3.2b that the separatrices divide the motion
into two regimes. For 2Ek < H2=J2 the motion has the form of nutation about
the principal axis having the largest moment of inertia, and 2Ek > H2=J2 results
in nutation about the principal axis with the smallest moment of inertia. Motion
along a separatrix is a limiting case of either of these regimes. In order that one
analytic formulation will cover both of these cases, we label the principal axes so
that nutation is always about ˙e3. Thus

J1 < J2 < J3 if 2Ek � H2=J2; (3.116a)

J1 > J2 > J3 if 2Ek � H2=J2 (3.116b)
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No component of the angular velocity is constant in the triaxial symmetry
case, so the solutions cannot be expressed in terms of sines and cosines. The
closed-form solutions are expressed in terms of the Jacobian elliptic functions [1]
sn.ujm/; cn.ujm/, and dn.ujm/ with argument u and parameter m.11 We define two
signs, s1 and s3 equal to˙1, a dimensionless constant

� �
�
J1.J3 � J1/
J2.J3 � J2/

�1=2
(3.117)

and the angular rates

!1m �
�
2J3Ek �H2

J1.J3 � J1/
�1=2

(3.118a)

!3m �
�
H2 � 2J1Ek
J3.J3 � J1/

�1=2
(3.118b)

Then

!1.t/ D s1 !1m cn
�
u0 C !pt jm

	
(3.119a)

!2.t/ D �s1� !1m sn
�
u0 C !pt jm

	
(3.119b)

!3.t/ D s3 !3m dn
�
u0 C !pt jm

	
(3.119c)

where

!p D Œ.J2 � J3/=J1��s3 !3m (3.120)

and

m D .J2 � J1/.2J3Ek �H2/

.J3 � J2/.H2 � 2J1Ek/ (3.121)

Note that m D 0 for 2Ek D H2=J3, m D 1 for 2Ek D H2=J2, and Eq. (3.116)
restrictsm to always lie between these limits. Figure 3.5a shows the Jacobian elliptic
functions for m D 0:7, which is the value for 2J2Ek D .16=17/H2 with the inertia
ratios used in Fig. 3.2b.

The Jacobian elliptic functions obey the differential equations

sn0.ujm/ D cn.ujm/dn.ujm/ (3.122a)

cn0.ujm/ D �sn.ujm/dn.ujm/ (3.122b)

dn0.ujm/ D �m sn.ujm/cn.ujm/ (3.122c)

11Some authors, including Hughes [14], use the modulus k � m1=2 in place of the parameter.
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Fig. 3.5 Jacobian elliptic functions. (a) Elliptic functions for m D 0:7. (b) Dependence of the
quarter-period K on m

where the prime denotes differentiation with respect to the argument. These
equations can be used to show that Eq. (3.119) obeys Eq. (3.93). The Jacobian
elliptic functions also satisfy the quadratic relations

cn2.ujm/C sn2.ujm/ D dn2.ujm/Cm sn2.ujm/ D 1; (3.123)

which verify thatEk andH are the rotational kinetic energy and angular momentum
magnitude, respectively, of the solutions. The Jacobian elliptic functions are related
to the usual trigonometric functions by

sn.ujm/ D sin' (3.124a)

cn.ujm/ D cos' (3.124b)

dn.ujm/ D .1 �m sin2 '/1=2 (3.124c)

where ' is an implicit function of u and m defined by the integral relation

u D
Z '

0

d�

.1 �m sin2 �/1=2
(3.125)

These equations lead directly to Eqs. (3.122) and (3.123). The quarter-period of
the sine or cosine function is =2, so the quarter-period of the Jacobian elliptic
functions is

K.m/ D
Z =2

0

d�

.1 �m sin2 �/1=2
(3.126)

This integral is known as a complete elliptic integral of the first kind [1]. Figure 3.5b
shows that the quarter-period is an increasing function ofm, equal to =2 form D 0
and becoming infinite as m goes to 1.
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We can use the addition formulas for the Jacobian elliptic functions to write
the triaxial solutions in terms of initial values. The addition formulas are, with the
parameter m omitted for notational convenience,

sn.uC v/ D snu cnv dnv C snv cnu dnu

1 �m sn2u sn2v
(3.127a)

cn.uC v/ D cnu cnv � snu dnu snv dnv

1 �m sn2u sn2v
(3.127b)

dn.uC v/ D dnu dnv �m snu cnu snv cnv

1 �m sn2u sn2v
(3.127c)

The angular rates can then be written in terms of the initial values as

!1.t/ D !01 cn.!pt/C Œ.J2 � J3/=J1�.!02!03=!p/sn.!pt/dn.!pt/

1 � Œ.J2 � J3/=J1�Œ.J1 � J2/=J3�.!02=!p/2sn2.!pt/
(3.128a)

!2.t/ D !02 cn.!pt/dn.!pt/C Œ.J3 � J1/=J2�.!03!01=!p/sn.!pt/

1 � Œ.J2 � J3/=J1�Œ.J1 � J2/=J3�.!02=!p/2sn2.!pt/
(3.128b)

!3.t/ D !03 dn.!pt/C Œ.J1 � J2/=J3�.!01!02=!p/sn.!pt/cn.!pt/

1 � Œ.J2 � J3/=J1�Œ.J1 � J2/=J3�.!02=!p/2sn2.!pt/
(3.128c)

Comparison with Eq. (3.93) suggests the alternative form

!1.t/ D !01 cn.!pt/C . P!01=!p/sn.!pt/dn.!pt/

1 � !�2
p . P!01=!03/. P!03=!01/sn2.!pt/

(3.129a)

!2.t/ D !02 cn.!pt/dn.!pt/C . P!02=!p/sn.!pt/

1 � !�2
p . P!01=!03/. P!03=!01/sn2.!pt/

(3.129b)

!3.t/ D !03 dn.!pt/C . P!03=!p/sn.!pt/cn.!pt/

1 � !�2
p . P!01=!03/. P!03=!01/sn2.!pt/

(3.129c)

but neither form is especially convenient for computation.
Equations (3.124) and (3.125) show that the Jacobian elliptic functions are equal

to the usual trigonometric functions for m D 0:

sn.uj0/ D sin u (3.130a)

cn.uj0/ D cos u (3.130b)

dn.uj0/ D 1 (3.130c)

They are equal to hyperbolic functions for m D 1:

sn.uj1/ D tanh u (3.131a)

cn.uj1/ D sech u (3.131b)

dn.uj1/ D sech u (3.131c)
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which give the solution for motion on the separatrices with 2Ek D H2=J2. These
solutions are not periodic, because the quarter-period is infinite for m D 1; they
approach pure rotation about the principal axis e2 in the infinite past and future.

The speed at which the angular momentum vector moves over the sphere of
radius H in the body frame is also given by Eq. (3.102) in the triaxial case,
but substituting Eq. (3.119) shows that the speed is not constant in this case.
However, nice expressions can be found for the maximum and minimum speeds.
The maximum, reached when !2 D 0 or equivalently where the path of the angular
momentum crosses the plane perpendicular to e2, is

k PHBkmax D .J3 � J1/!1m!3m (3.132)

The minimum, reached when j!2j obtains its maximum value on the path, is

k PHBk2min D .H2 � 2J2Ek/.2J3Ek �H2/=.J2J3/ (3.133)

The maximum speed has the same form as for an axisymmetric body, but the
minimum speed is specific to the triaxial case. It is not difficult to see that
these equations give k PHBk D 0 for rotation about a principal axis, for which
2Ek D H2=Jk .

Solution of the kinematic equations proceeds in parallel with the axisymmetric
case. We again specify the attitude by 3�1�3 Euler angles and choose the inertial
reference frame with its third axis in the direction of HI . Then Eq. (3.105) holds,
and substituting Eq. (3.119) gives

2
4
J1 !1
J2 !2
J3 !3

3
5 D

2
4
s1J1 !1m cn

�
u0 C !pt jm

	
�s1J2� !1m sn

�
u0 C !pt jm

	
s3J3 !3m dn

�
u0 C !pt jm

	

3
5 D H

2
4

sin sin �
cos sin �

cos �

3
5 (3.134)

Thus

cos � D .s3J3 !3m=H/dn
�
u0 C !pt jm

	
(3.135a)

 D atan2
�
s1J1cn

�
u0 C !pt jm

	
;�s1J2� sn

�
u0 C !pt jm

		
(3.135b)

The third Euler angle is found by integrating Eq. (3.38) using Eq. (3.42):

P� D csc �.!1 sin C !2 cos / D H J1!
2
1 C J2!22

J 21 !
2
1 C J 22 !22

D H J3 � J2 C .J2 � J1/sn2.u0 C !pt jm/
J1.J3 � J2/C J3.J2 � J1/sn2.u0 C !pt jm/ (3.136)

The quantities �; P , and P� are all time-varying for triaxial inertia.
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We complete the analysis of motion for triaxial inertia by finding the components
of the angular velocity in the inertial frame. These are given by Eq. (3.112).
Performing the matrix multiplications gives

A.e1;��/A.e3;� /
2
4
!1
!2
!3

3
5 D A.e1;��/

2
4
.J2 � J1/ !1!2=.H sin �/
.J1!

2
1 C J2!22/=.H sin �/

!3

3
5

D 1

H

2
4

.J2 � J1/ !1!2 csc �
.J 21 !

2
1 C J 22 !22/�1=2J1.J3 � J1/!21m!3

2Ek

3
5 (3.137)

The component of !BII parallel to HI has the constant value 2Ek=H , as required
by Poinsot’s construction and as we saw for axial symmetry. The component of
!BII transverse to HI has a varying magnitude, so the herpolhode is not a circle.
In fact, the herpolhode is not a closed curve in general, because the motion of � is
not commensurate with that of � and  .

It is not difficult to see that all the equations for the triaxial case reduce to the
axisymmetric results, with  0 D .u0 C s1=2/, if J1 D J2.

3.3.5 Internal Torques

Although some spacecraft can be modeled as a single rigid body, many are more
complex. These complexities can be of several types. The first is that the spacecraft
consists of a number of rigid bodies connected by joints having one, two, or
three degrees of rotational freedom, and sometimes admitting sliding motion as
well. Powerful and general commercial software packages, many employing Kane’s
method [15, 16] are available to analyze the dynamics of these systems. We will
only treat the simple cases of reaction wheels and control moment gyros, the more
complex systems being beyond the scope of this text.

The rigid model of a spacecraft will also be inadequate if we cannot ignore
flexibility, which is always present at some level. Analysis of flexible body dynamics
generally uses finite element methods [30], which are almost always applied to the
analysis of large spacecraft but are also beyond the scope of this text.

A third complication often encountered is fluid motion, or slosh of liquid fuels
or cryogens. We will only give a basic introduction to the treatment of slosh, with
references to the literature.

These internal torques are also known as momentum exchange torques because
they result in, or are a result of, the exchange of angular momentum between
components of complex spacecraft without a change in the net system momentum of
the entire spacecraft. As the listing above indicates, some internal torques constitute
undesirable disturbances, while others are provided by control mechanisms.
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3.3.5.1 Reaction Wheels and Control Moment Gyros

Let us consider a spacecraft with n reaction wheels or control moment gyros, labeled
by an index `. Each wheel rotates about its spin axis with an angular velocity !w

`

with respect to the body. The wheel is axially symmetric about its spin axis, so
the spin axis is a principal axis with principal moment of inertia J k

` , and every axis
perpendicular to the spin axis is a principal axis with moment J ?̀.12 Thus the inertia
tensor of the `th wheel in the body reference frame is

J w
` D J ?̀.I3 � w`wT

` /C J k
` w`wT

` (3.138)

where the unit vector w` defines the spin axis in the body frame. Letting QJB
represent the moment of inertia of the spacecraft without the wheels, the body
frame representation of total angular momentum with respect to inertial space of
the spacecraft with its wheels is

HB D QJB!BIB C
nX
`D1

J w
` .!

BI
B C !w

` w`/

D JB!BIB CHw
B (3.139)

where

JB � QJB C
nX
`D1

J ?̀.I3 � w`wT
` / (3.140)

and

Hw
B D

nX
`D1

J
k
` .w` �!BIB C !w

` /w` �
nX
`D1

Hw
` w` (3.141)

The body moment of inertia JB is defined to include the inertia of the wheels
transverse to their spin axes, but not their inertia along their spin axes. Note that
Hw
B denotes only the angular momentum of the wheels along their spin axes;

the momentum of their transverse rotation is included in JB!BIB . The difference
between reaction wheels and control moment gyros is that w` is fixed and !w

` is
changing for reaction wheels, while !w

` is constant and w` is moved by a gimbal
(or gimbals) for control moment gyros. Some control wheels have been designed to
vary both w` and !w

` , but these have not been widely employed.

12This describes an ideal wheel. The effects of deviations from this ideal case will be discussed in
Sect. 4.8.
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The rotational dynamics of the spacecraft with wheels are still described by
Eq. (3.80) but with Eq. (3.79c) replaced by

!BIB D J�1
B .HB �Hw

B/ (3.142)

where the superscript c is understood but has been omitted for economy of
notation. For many attitude determination problems, !BIB and Hw

B can be computed
from Eqs. (3.141) and (3.142) using tachometer data for reaction wheels or axis
orientation data for control moment gyros.13 To complete the dynamics analysis,
however, a dynamic equation for Hw

B is required.
The rotational kinetic energy of a spacecraft with reaction wheels or control

moment gyros is given by

Ek D 1

2
.!BIB /

T QJB !BIB C
1

2

nX
`D1
.!BIB C !w

` w`/
T J w

` .!
BI
B C !w

` w`/

D 1

2
.!BIB /

T JB !
BI
B C

1

2

nX
`D1

J
k
` .w` �!BIB C !w

` /
2

D 1

2
.!BIB /

T JB !
BI
B C

1

2

nX
`D1
.J

k
` /

�1.Hw
` /

2 (3.143)

Now let us specialize to reaction wheels, which have been more commonly
employed in small to medium size spacecraft than control moment gyros. The
representations in the body frame of the angular momenta of the wheels are the
terms in the sum in Eq. (3.139). It follows that the equation of motion of the `th
wheel in the body frame, using Eq. (3.138), is

J w
` . P!BIB C P!w

` w`/D QLw
` �!BIB �ŒJ w

` .!
BI
B C !w

` w`/�

D QLw
` C Œ J ?̀.w` �!BIB / �Hw

` �.!
BI
B � w`/ (3.144)

where QLw
` is the applied torque. The other term on the right side of this equation is

perpendicular to the spin axis; it is provided by the wheel bearings and is not under
our direct control. Thus we are only interested in the spin axis component of the
torque, which is denoted by Lw

` and is given by

Lw
` D wT

` J
w
` . P!BIB C P!w

` w`/ D J k
` .w` � P!BIB C P!w

` / D PHw
` (3.145)

Then Eq. (3.141) gives14

13Giving !BIB D .JB CPn
`D1 J

k

` w`wT
` /

�1.HB �Pn
`D1 J

k

` !
w
` w`/ and Hw

B D HB � JB!
BI
B .

14Including an !BIB � Hw
B term in this equation would be double-counting, because this term was

already accounted for in Eq. (3.144). It can be seen explicitly in Eq. (3.147).
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PHw
B D

nX
`D1
PHw
` w` D

nX
`D1

Lw
` w` � Lw

B (3.146)

We find the generalization of Eq. (3.81) to include reaction wheels by substituting
this and Eq. (3.139) into Eq. (3.80), yielding

P!BIB D J�1
B ŒLB � Lw

B �!BIB � .JB!BIB CHw
B/� (3.147)

The negative sign before Lw
B on the right side reflects Newton’s third law of motion.

The rate of change of the kinetic energy is given by the derivative of Eq. (3.143),

PEk D !BIB � ŒLB � Lw
B �!BIB �HB�C

nX
`D1
.w` �!BIB C !w

` /L
w
`

D !BIB � LB C
nX
`D1

!w
` L

w
` (3.148)

This shows that the change in rotational kinetic energy is the sum of work done
by the external torques and by the internal torques, a concrete illustration of the
observation made near the end of Sect. 3.3.1 that internal forces can modify the
energy of rotational motion.

3.3.5.2 Slosh

Spacecraft often contain fluids, the most common being propellants or cryogens
for cooling scientific instruments. The motion of these fluids, commonly called
slosh, is often a source of undesirable attitude disturbances. Slosh is very difficult
to analyze, and we will only provide a very brief introduction to some of the issues;
the monograph by Dodge provides a much more thorough discussion [8].

Fuel slosh can be a major problem for spin-stabilized spacecraft. In particular,
the energy dissipated by sloshing liquid can destabilize the motion of a spacecraft
spinning about an axis of minimum MOI, as discussed in Sect. 3.3.3.2. Slosh is also
a problem for repointing maneuvers of fine-pointing spacecraft. A strong coupling
of the fluid motion to the rigid spacecraft can cause large pointing errors. Weak
coupling of the fluid motion, on the other hand, leads to smaller pointing errors,
but the perturbations take a correspondingly longer time to damp out. The resulting
long resettling times after attitude maneuvers decrease the time available for fine-
pointing observations.

The main dynamic effects of slosh result from the motion of the center of
mass of the moving fluid. This is usually represented by the mechanical model
of a pendulum or a mass on a spring to represent the motion of the fluid, along
with some mechanism to provide damping. Dodge presents methods for computing
the frequencies and damping coefficients for fluid containers of various shapes,
including a variety of baffles, diaphragms, and fluid management devices. The fill
factor of the container, the ratio of the amount of fluid contained to the capacity of
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the full tank, is a critical factor. Slosh is much less of a factor for a nearly full tank,
because the center of mass cannot move much, or for a nearly empty tank, because
there is less moving mass.

Fluid motion in microgravity is different from motion under acceleration forces.
The relative importance of inertia forces, gravity forces, and capillary forces on fluid
motion are characterized by the Bond number, the Weber number, and the Froude
number, while the Reynolds number determines the importance of viscosity. All
these considerations are important for providing a slosh model from first principles,
but it is quite common for the parameters in a slosh model to be determined
empirically.

3.3.6 External Torques

External torques involve an interaction with entities external to the spacecraft.
As opposed to internal torques, external torques change the overall momentum
of the spacecraft. In common with internal torques, external torques include both
undesirable disturbance torques and torques deliberately applied for control.

3.3.6.1 Gravity-Gradient Torque

Any nonsymmetrical rigid body in a gravity field is subject to a gravity-gradient
torque. We compute this torque by summing the contributions of the gravitational
forces on the various point masses constituting the rigid body as in Eq. (3.57). The
gravitational force on the i th particle is

Fiext D mig.ri0/ D mi r rU.r/jrDri0 (3.149)

where U.r/ is the gravity potential.15 Assuming that only first-order variations in
the gravitational field over the rigid body are significant allows us to expand in a
power series, retaining only the first two terms:

Fiext D mig.ric C rc0/ D mi Œg.rc0/CG.rc0/ric � (3.150)

where

G.rc0/ � @g.r/
@r

ˇ̌
ˇ̌
rDrc0

D @2U.r/
@r @rT

ˇ̌
ˇ̌
rDrc0

(3.151)

15As is customary in astrodynamics, this is the negative of the potential energy.
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is the gravity-gradient tensor, evaluated at the center of mass. It follows from
Eq. (3.151) that the gravity-gradient tensor is a symmetric 3 � 3 matrix.

Substituting into Eq. (3.57) gives the gravity-gradient torque about the center of
mass as

Lcgg D
nX
iD1

miric �
�
g.rc0/CG.rc0/ric�

D
 

nX
iD1

miric
!
� g.rc0/C

nX
iD1

miric �
�
G.rc0/ric

�

D
nX
iD1

miric �
�
G.rc0/ric

�
(3.152)

using the property of the center of mass expressed in Eq. (3.55).
It is usually adequate to approximate the gravity field as spherically symmetric

for computing gravity-gradient torques. In this case, we have

g.r/ D ��r
r3

(3.153)

and therefore

G.r/ D � �
r3

�
I3 � 3rrT

r2

�
(3.154)

where � is the gravitational parameter of the central body, the product of its mass
and Newton’s universal gravitational constant, r is the radius vector from the center
of the central body, and r � krk. Inserting this into Eq. (3.152), letting rc0 D �rn,
where n is the body frame representation of a nadir-pointing unit vector, and using
various identities for dot and cross products gives

Lcgg D �
�

r3

nX
iD1

miric �
�
ric � 3nnT ric

	 D �3�
r3

n �
nX
iD1

mi .ric/.ric/T n

D 3�

r3
n �

nX
iD1

mi

�krick2I3 � .ric/.ric/T
�

n D 3�

r3
n � .J cn/ (3.155)

where J c is the moment of inertia tensor about the center of mass. Several properties
of the gravity-gradient torque are apparent from this equation: its magnitude is
inversely proportional to the cube of the distance from the center of the central
body, its direction is perpendicular to the radius vector from the central body, and it
vanishes if the radius vector is along any principal axis of inertia.

To investigate the gravity-gradient torque in more detail, consider a spacecraft
orbiting the Earth (or any celestial body) and oriented to the nadir. We represent the
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attitude relative to the LVLH frame16 by a 3�2�1 Euler angle sequence of yaw D �,
pitch D � , and roll D  angles. The nadir vector is the e3 axis in the LVLH frame,
so the nadir vector in the body frame is given by Eq. (2.164) as

n D A321.�; �;  /
2
4
0

0

1

3
5 D

2
4
� sin �

cos � sin 
cos � cos 

3
5 (3.156)

Substituting this into Eq. (3.155) and assuming that the body frame is a principal
axis frame gives

Lcgg D
3�

r3

2
4
.J3 � J2/ cos2 � cos sin 
.J3 � J1/ cos � sin � cos 
.J1 � J2/ cos � sin � sin 

3
5 (3.157)

We notice that the torque does not depend on the yaw angle, which is one of the
reasons for choosing a 3�2�1 sequence to specify the attitude.17 The yaw angle
can be quite large for some missions, with 180ı yaw maneuvers used to keep one
side of the spacecraft cool by facing it away from the Sun. The roll and pitch angles
are usually small, though, and almost certainly less than 90ı in magnitude. It is
clear that the gravity-gradient torque vanishes if the roll and pitch are both zero, so
this is an equilibrium configuration. For small pitch and roll angles, the third (yaw)
component of the gravity-gradient torque is small, so we will not be concerned
with it. Comparing Eqs. (3.156) and (3.157) shows that the first (roll) component
of the gravity-gradient torque will drive the roll angle toward zero if J3 < J2 and
away from zero if J3 > J2. Similarly, the second (pitch) component of the gravity-
gradient torque will drive the pitch angle toward zero if J3 < J1 and away from zero
if J3 > J1. Thus the equilibrium at zero roll and pitch is a stable equilibrium if J3
is the smallest principal moment, otherwise the equilibrium is unstable for rotations
about one or both axes. Another way of stating this is that gravity-gradient torque
will tend to align a spacecraft with its principal axis of minimum inertia aligned
with the nadir vector.

Gravity-gradient torques are often used for passive stabilization of a spacecraft.
A gravity-gradient boom with a mass at the end can be deployed along the positive
or negative yaw axis to increase the J1 and J2 moments of inertia relative to
the J3 inertia about the desired nadir-pointing axis. The boom deployment must
be carefully timed to avoid an inverted orientation, with the desired nadir-pointing
axis pointing in the zenith direction. Pendular motions, known as libration, can
be damped out by energy-dissipating libration dampers, which are very similar in
design and function to nutation dampers. Finally, we note that the gravity-gradient
torque cannot provide stability against rotations around the nadir vector. These are
controlled either by active means or by employing a momentum wheel to provide a

16The LVLH frame is defined in Sect. 2.6.4.
17A 3�1�2 sequence would serve as well.



106 3 Attitude Kinematics and Dynamics

momentum bias along the pitch axis. Issues arising from the deployment of gravity-
gradient booms are described on pp. 669–677 of [19].

To handle cases more general than a spherically symmetric gravity field, we can
use Eq. (2.56c) to find an expression for the gravity-gradient torque for a general
gravity-gradient tensor. This identity gives, suppressing the argument of G for
notational convenience,

ŒLcgg�� D
nX
iD1

mi Œ.ric �Gric/�� D
nX
iD1

mi ŒGric.ric/T � ric.Gric/T �

D
nX
iD1

mi

�krick2I3 � .ric/.ric/T
�
GT �G

nX
iD1

mi

�krick2I3 � .ric/.ric/T
�

D .GJ c/T �GJ c (3.158)

making use of Eq. (2.7c) and the fact that both G and J c are symmetric.

3.3.6.2 Magnetic Torque

The torque generated by a magnetic dipole m in a magnetic field B is

Lmag D m � B (3.159)

The most basic source of a magnetic dipole is a current loop. A current of I amperes
flowing in a planar loop of area A produces a dipole moment of magnitudem D IA
in the direction normal to the plane of the loop and satisfying a right-hand rule.
It follows from this definition that the natural unit for the dipole moment is Am2.
When m is in Am2 and the magnetic field is specified in Tesla, Eq. (3.159) gives
the torque in Nm. If there are N turns of wire in the loop, the dipole moment
has magnitude m D NIA. The dipole moment can be significantly increased
by wrapping the wire loops around a ferromagnetic core, as will be discussed in
Sect. 4.10.

Magnetic control torques are used almost exclusively in near-Earth orbits, where
the magnitude of the Earth’s magnetic field is roughly in the range of 20–50 �T.
Commercially available torquers can provide dipole moments from 1 to 1,000 Am2,
so the resulting magnetic control torques range from 2 � 10�5 to 0.05 Nm.
As described in Sect. 11.1, the field strength falls off as the inverse cube of the
distance from the center of the Earth, so magnetic control has rarely been employed
in higher orbits, but it has sometimes been used even in geosynchronous orbits.
Undesirable magnetic dipoles can lead to magnetic disturbance torques, which are
generally several orders of magnitude smaller than the above estimates of control
torques.

It is customary to express Lmag, m, and B in body-frame coordinates. There
are two ways to determine the body-frame magnetic field. The first employs
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measurements by an onboard three-axis magnetometer (TAM), as described in
Sect. 4.5. The other method is to compute the magnetic field vector, R, in reference-
frame coordinates from a model, either a simple dipole model, the International
Geomagnetic Reference Field (IGRF), or some truncated version of the IGRF, as
described in Sect. 11.1. The attitude matrix then rotates the field to the body frame
by B D AR. In addition to an attitude estimate, this method requires an onboard
ephemeris, which in modern spacecraft would be provided by GPS, as well as an
onboard magnetic field model.

One advantage of magnetic torques is that they produce no force, so they do
not perturb the spacecraft’s orbit. A significant disadvantage is that the torques are
constrained to lie in the plane orthogonal to the magnetic field, as is clear from
Eq. (3.159), so only two out of three axes can be controlled at a given time instant.
However, full three-axis control is available over a complete orbit provided that
the spacecraft’s orbital plane does not coincide with the geomagnetic equatorial
plane and does not contain the magnetic poles [3]. The Earth’s rotation causes this
geometry to change, so any simulation involving magnetic control should be at least
24 h in length to ensure that unfavorable magnetic field geometry does not cause a
problem at some point.18

Because magnetic torques cannot provide three-axis control at any instant of
time, they are generally employed in conjunction with some other form of attitude
control. This can be passive control, such as spin stabilization [9, 11, 13, 23] or
gravity-gradient stabilization [7,28,29], but it is more common to employ magnetic
control in conjunction with reaction wheels. In this application, the wheels provide
the actual pointing and maneuvering torques, and magnetic torques are used to
unload the secular angular momentum buildup in the wheels. Reference [6] provides
an analysis of the orbit-averaged behavior of magnetic control for unloading angular
momentum. Some specific examples of magnetic control laws can be found in
Chap. 7.

3.3.6.3 Aerodynamic Torque

For objects in low-Earth orbit, atmospheric drag is a significant source of perturbing
torque. Aerodynamic torque is generally computed by modeling the spacecraft as a
collection of N flat plates of area Si and outward normal unit vector niB expressed
in the spacecraft body-fixed coordinate system. The torque depends on the velocity
of the spacecraft relative to the atmosphere. This is not simply the velocity of the
spacecraft in the GCI frame, because the atmosphere is not stationary in that frame.
The most common assumption is that the atmosphere co-rotates with the Earth. The
relative velocity in the GCI frame is then given by

vrelI D vI C Œ!˚I�� rI (3.160)

18This point was often emphasized by Henry Hoffman of Goddard Space Flight Center.
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where rI and vI are the position and velocity of the spacecraft expressed in the GCI
coordinate frame. The Earth’s angular velocity vector is !˚I D !˚Œ0 0 1�T with
!˚ D 0:000 072 921 158 553 rad/s. Inserting this !˚I gives the relative velocity
in the body frame as

vrelB D A
2
4
Px C !˚ y
Py � !˚ x
Pz

3
5 (3.161)

whereA is the attitude matrix. The inclination of the i th plate to the relative velocity
is given by

cos �iaero D
niB � vrelB

kvrelk (3.162)

The aerodynamic force on the i th plate in the flat plate model is

Fiaero D �
1

2
� CDkvrelkvrelB Si max

�
cos �iaero; 0

	
(3.163)

where � is the atmospheric density and CD , is a dimensionless drag coefficient. The
drag coefficient is determined empirically, and is usually in the range between 1.5
and 2.5. Methods for computing the atmospheric density are presented in Sect. 11.2.

The aerodynamic torque on the spacecraft is then

Liaero D
NX
iD1

ri � Fiaero (3.164)

where ri is the vector from the spacecraft center of mass to the center of pressure of
the i th plate. Note this algorithm does not account for potential self-shielding that
would exist on concave spacecraft.

In principle, aerodynamic torques could be used for attitude control, either for
passive control like the feathers on an arrow, or even for active control by providing
movable surfaces. Applications of this concept have been exceedingly rare, however.

3.3.6.4 Solar Radiation Pressure Torque

Solar radiation pressure (SRP) is another source of disturbance torque. In low-
Earth orbit, the effect of SRP is dominated by aerodynamics, but SRP torques will
generally dominate aerodynamic torques in higher altitude orbits (�800 km). The
SRP torque is zero when the spacecraft is in the shadow of the Earth or any other
body, of course. In contrast to the case of aerodynamic torques, movable surfaces
have been used on some spacecraft in geosynchronous orbits to balance the SRP
torques. In most applications, the surfaces have been moved by daily commands,
and not controlled autonomously or in real time by an onboard computer [12].
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As for aerodynamic torque, we model the surface of the spacecraft as a
collection of N flat plates of area Si , outward normal niB in the body coordinate
frame, specular reflection coefficient Rispec, diffuse reflection coefficient Ridiff, and
absorption coefficient Riabs. Diffuse reflection is assumed to be Lambertian, which
means that the intensity of the reflected light in any direction is proportional to the
cosine of the angle between the reflection direction and the normal. The coefficients
sum to unity; Rispec CRidiff CRiabs D 1.

The spacecraft-to-Sun unit vector in the body frame is

s D A esatˇ (3.165)

where A is the attitude matrix and esatˇ is the spacecraft-to-Sun vector in the GCI
frame. The angle between the Sun vector and the normal to the i th plate is given by

cos �iSRP D niB � s (3.166)

The SRP force on the i th plate can then be expressed as [26]

FSRPD�PˇSi
�
2

�
Ridiff

3
CRispec cos �iSRP

�
niBC.1 �Rispec/s

�
max

�
cos �iSRP; 0

	

(3.167)

where Pˇ is the solar radiation pressure. Section 11.3 present methods for comput-
ing the Sun position, solar radiation pressure, and conditions for shadowing.

The SRP torque on the spacecraft is then

LiSRP D
NX
iD1

ri � FiSRP (3.168)

where ri is the vector from the spacecraft center of mass to the center of pressure of
the SRP on the i th plate.

This formulation has several limitations. First, the Sun is not the only source of
radiation, although it is by far the largest for Earth-orbiting spacecraft. Reflected
light from the Earth or the Moon, called albedo, can be significant if very precise
dynamical modeling is required; and models incorporating this effect have been
developed [4].

Secondly, the torque due to thermal radiation emitted from the spacecraft has
been ignored. A spacecraft is usually in a long-term energy balance, so all the
absorbed radiation is emitted as thermal radiation, although not necessarily at
the same time or from the same surface as its absorption. Accurate modeling of
thermal radiation requires knowledge of the absolute temperature Ti and emissivity

i (a dimensionless constant between 0 and 1) of each surface. Then the thermal
radiation flux from the surface is given by the Stefan-Boltzmann law

F i
thermal D 
i�T 4i (3.169)
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where � D 5:67�10�8 Wm�2K�4 is the Stefan-Boltzmann constant. If the thermal
radiation from every surface is Lambertian, it gives rise to a net torque

Lthermal D �2
3

NX
iD1

F i
thermalSi .r

i � niB/ (3.170)

Thermal radiation torque can usually be neglected because the thermal flux is
emitted roughly equally in all directions, so that the net torque is small.

Finally, Eqs. (3.168) and (3.170) ignore potential self-shadowing of concave
spacecraft. If the configuration of the spacecraft is known a priori, self-shadowing
can be taken into account by replacing Si with the area of the flat plate that is
visible to the Sun after accounting for shadowing. Modeling the effects of reflected
radiation or thermal radiation from one surface striking another surface is an
additional complication. Another drawback to Eq. (3.167) is that it is only valid
for a collection of flat surfaces with uniquely defined outward normals. Most real
spacecraft have some curved surfaces, and accurately approximating these surfaces
by a collection of flat plates causes the size of the model to grow, increasing the
computational burden.

3.3.6.5 Mass-Expulsion Torques

Translational momentum is the productmv of mass and velocity. We generally think
of a force producing a rate of change of momentum mPv. Mass-expulsion forces, on
the other hand, are the result of a change of momentum Fmexp D � Pmvrel, where Pm
is the rate at which mass is expelled, and vrel is the velocity of the expelled mass
relative to the spacecraft. Newton’s third law of motion gives the negative sign,
because this is a reaction force on the spacecraft. Another way to state this is to say
that the mass-expulsion force reflects the conservation of momentum of the system
consisting of the spacecraft and the expelled mass. Mass-expulsion forces provided
by thrusters can be used to adjust the trajectories of spacecraft that require such
corrections.

A mass-expulsion force will generally be accompanied by a torque

Lmexp D r � Fmexp D � Pm r � vrel (3.171)

where r is the vector from the spacecraft center of mass to the point where the
mass is expelled. Undesirable mass-expulsion torques during orbit maneuvers can
be minimized either by requiring the line of action of the thrust to pass through the
spacecraft’s center of mass or by using multiple thrusters whose torques cancel. It
is impossible in practice to ensure exact cancelation, however.

Thrusters can also be used specifically as sources of torque. Attitude control
thrusters are generally much smaller than orbit adjustment thrusters, because atti-
tude control requires less force. An advantage of using thrusters for attitude control
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is that they can be used anywhere, unlike magnetic torquers or gravity-gradient
booms that require an ambient magnetic or gravitational field. They have the
disadvantage of requiring expendable propellant, which can often be the element
limiting the lifetime of a mission. Another disadvantage is that attitude control
thrusters are accompanied by orbit-perturbing forces unless their forces are arranged
in exact couples, equal and opposite pairs, which are impossible to attain in practice.

Use of thrusters for attitude control will be considered in more detail in Sect. 4.11
and Chap. 7, so this section will concentrate on mass-expulsion torques as a
disturbance source. One source already mentioned is residual torques from orbit
maneuvers, which can result from thruster misalignments or from impingement of
thruster plumes on the spacecraft structure. Other common sources are outgassing
of water vapor from the spacecraft structure during early stages of a mission or
venting of cryogens. These can be minimized by arranging the vents to provide
cancelation of the torques. Disturbances can also result from leaks of fuel, fuel
pressurizing agents, or air from pressurized compartments, as on the International
Space Station [18].

The Wilkinson Microwave Anisotropy Probe (WMAP) provided an interesting
example of a mass-expulsion torque [25]. WMAP had a warm Sun-facing side and
a cold side separated by a Sun shield of radius 2.5 m (see Fig. 7.4). Shortly after
launch, WMAP executed three highly elliptical orbits with periods of approximately
7 days and with perigees on the sunlit side of the Earth. WMAP’s attitude was
inertially fixed prior to planned orbit adjustments at the perigees. About 40 min
before the first perigee passage, the spacecraft angular momentum began to increase,
peaking at about 2 Nms approximately 20 min before perigee and then decreasing.
Various mechanisms for this anomalous torque were considered and rejected. The
final explanation was that water vapor outgassing from the spacecraft had condensed
on the cold side of the Sun shield as ice while WMAP was on the dark side of the
Earth and had sublimated, first from one half of the Sun shield and then from the
other, when the cold side was subjected to reflected sunlight from the Earth near
perigee. The average velocity of the sublimated water molecules was estimated,
assuming a temperature of 150 K, to be

vrel D
p
2kBT=mH2O D 370 m/s (3.172)

where kB D 1:38� 10�23 J/K is the Boltzmann constant andmH2O D 3� 10�26 kg
is the mass of a water molecule. Assuming an average lever arm of R D 1:1 m, the
quantity of sublimated ice required to explain the anomalous torque is only �m D
�H=R vrel D 5 g.

3.3.7 Angular Momentum for Health Monitoring

We have emphasized that internal momentum-exchange torques can lead to
rapid variation of a spacecraft’s angular velocity, but not of the system angular
momentum. This insight led to an application of angular momentum conservation
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for spacecraft failure detection [21]. A computer onboard the Hubble Space
Telescope (HST) calculates the total system angular momentum HB by means
of Eqs. (3.139)–(3.141), with the angular velocity being sensed by the gyros and the
wheel angular momentum computed using wheel tachometer data. The high torque
of the reaction wheels can cause both the wheel angular momentum and the body
angular momentum to change rapidly, but their vector sum only changes slowly.
Subtracting easily computable gyroscopic, magnetic, and gravity-gradient torques
from the rate of change of the computed system momentum gives an apparent
disturbance torque:

Ldisturbance D PHB C! �HB �m � B � Lgg (3.173)

with all the vectors computed in the spacecraft body frame. A large value of this
disturbance torque indicates a failure of either a reaction wheel tachometer or
a gyro. A tachometer failure could be identified by an independent test, so this
angular momentum test was implemented onboard HST to identify gyro failures.
The test initiated entry to a gyroless safehold mode three times in late 2002 and
early 2003 [22].

3.3.8 Dynamics of Earth-Pointing Spacecraft

A great many spacecraft are pointed at the Earth to study its weather, climate, and
resources. Thus it is useful to consider the special case of Earth-pointing spacecraft,
whose body axes are closely aligned with the LVLH frame defined in Sect. 2.6.4.
The attitude ABO specifying the orientation of the spacecraft body axes to the axes
of the LVLH frame, denoted by index O , is conveniently described by a 3�2�1
Euler sequence of yaw D �, pitch D � , and roll D  angles.

The dynamic equations give the motion relative to an inertial frame, so we write
ABI D ABOAOI and use the Eq. (3.12) with the appropriate assignment of frame
indices to find !BIB . The matrix ABO is given by Eq. (2.164), so Eq. (3.43) gives the
components of!BOB . The matrixAIO is given by Eq. (2.79), so Eq. (3.3) can be used
to find the angular velocity of the O frame with respect to the I frame:

�Œ!OIO �� D PAOIATOI D PATIOAIO D
2
4
PoT1I
PoT2I
PoT3I

3
5�o1I o2I o3I

�

D
2
4
Po1I � o1I Po1I � o2I Po1I � o3I
Po2I � o1I Po2I � o2I Po2I � o3I
Po3I � o1I Po3I � o2I Po3I � o3I

3
5 (3.174)

Considering the derivatives of oiI �ojI D ıij confirms that this 3�3matrix is skew-
symmetric. The inner products are frame-independent, but the subscript I is needed
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to specify the frame used for differentiation. We substitute Eq. (2.78) and carry out
some tedious but straightforward vector algebra to find the angular velocity of the
LVLH frame relative to the inertial frame as

!OIO D
2
4
�Po3I � o2I
Po3I � o1I
�Po2I � o1I

3
5 D

2
4

. Pg3rI C g3vI / � o2I
�. Pg3rI C g3vI / � o1I

. Pg2 rI � vI C g2 rI � PvI / � o1I

3
5

D
2
4

0

�krI � vIk=krIk2
krIk.o2I � PvI /=krI � vIk

3
5 (3.175)

The roll component of this angular velocity is zero, and the yaw component is also
zero if the spacecraft’s acceleration PvI is perpendicular to o2I , as it is for a purely
central force. As shown in Sect. 10.4.3, a non-central force causes the orbit plane to
precess, producing a small but finite yaw rotation rate. The pitch component of !OIO
is by far the largest.

We can obtain the attitude motion in the general case by solving the dynamic
equations from Sect. 3.3.2 with !BIB given by the procedure described above.
However, it is useful to study the special case of uncontrolled attitude motion in
a nearly circular Keplerian orbit with only small excursions from perfect alignment
with the LVLH coordinate frame. Applying Eqs. (10.32), (10.39), (10.40), (10.15),
and (10.43) of Chap. 10 to the pitch component of !OIO shows that

krI � vIk=krIk2 D n.1 � e2/�3=2.1C e cos �/2 (3.176)

where n is the mean motion, e is the eccentricity, � is the true anomaly. Now
we ignore all terms of higher than first order in the Euler angles, their rates,
and the eccentricity, and we approximate the cosines of the Euler angles by
unity and their sines by the angles themselves. With these approximations,
Eqs. (3.12), (3.43), (2.164), and (3.176) give

!BIB D !BOB � krI � vIk=krIk2
2
4

cos � sin�
cos cos� C sin sin � sin�
� sin cos� C cos sin � sin�

3
5

�
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P�

3
5 � n.1C 2e cos �/
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3
5 �

2
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P � n�
P� � n.1C 2e cos �/

P� C n 

3
5 (3.177)

The first and third components of this equation exhibit the phenomenon of roll/yaw
coupling. If we assume that the roll and yaw components of !BIB are exactly zero,
we have P D n� and P� D �n , with the solution

 .t/ D  .t0/ cos n.t � t0/C �.t0/ sinn.t � t0/ (3.178a)

�.t/ D �.t0/ cos n.t � t0/ �  .t0/ sinn.t � t0/ (3.178b)
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Fig. 3.6 Roll/yaw coupling

Thus a positive yaw becomes a positive roll one quarter orbit later and a negative
yaw a quarter orbit after that, etc., which is why roll/yaw coupling is also known
as quarter-orbit coupling. Figure 3.6 illustrates this effect, where H indicates the
orientation of the spacecraft’s total rotational angular momentum, which is assumed
to be directed along the spacecraft’s negative pitch axis but not exactly perpen-
dicular to the orbit plane. Angular momentum conservation keeps the direction
of this momentum fixed in inertial space, thereby ensuring that the roll and yaw
components of !BIB remain small.

Let us now investigate the dynamic equations of motion, assuming that a reaction
wheel, or possibly a combination of several wheels, provides a constant angular
momentum bias h along the pitch axis. This is a common method for enhancing
the roll/yaw coupling effect. Differentiating Eq. (3.177) and substituting Eq. (3.147)
with Lw

B D 0 as required by Eq. (3.146) gives

2
4

R � n P�
R� C 2en2 sin �
R� C n P 

3
5 D J�1

B ŒLB �!BIB � .JB!BIB C he2/� (3.179)

This makes the further approximation P� D n, ignoring terms that would be of order
e2 in Eq. (3.179). Next assume that the body axes are principal axes and that the
only significant external torque is the gravity-gradient torque, given by Eq. (3.157).
Applying Eqs. (10.20) and (10.43) of Chap. 10 shows that

�

r3
D n2

�
1C e cos �

1 � e2
�3

(3.180)

We make the small-angle approximation for the trigonometric functions and ignore
products of the eccentricity and the small angles, giving

LB D Lgg D 3n2
2
4
.J3 � J2/ 
.J3 � J1/�

0

3
5 (3.181)
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Substituting Eq. (3.177) for the components of !BIB on the right side of Eq. (3.179),
ignoring second-order terms in small quantities, and collecting terms gives

J1 R D nŒ4n.J3 � J2/C h� C Œn.J1 � J2 C J3/C h� P� (3.182a)

J2 R� D 3n2.J3 � J1/� � 2en2J2 sin � (3.182b)

J3 R� D nŒn.J1 � J2/C h�� � Œn.J1 � J2 C J3/C h� P (3.182c)

The first property of these equations to notice is that pitch motion is decoupled
from the roll and yaw motion. The pitch equation gives unstable motion with linear
growth if J1 D J3 and unstable motion with exponential growth if J1 < J3, so pitch
stability demands that J1 > J3. With the approximation P� D n, the solution for
J1 > J3 is found to be

� D �lib cos.!libt C ˛/C 2en2

n2 � !2lib
sin � (3.183)

where �lib and ˛ are constants of integration, and

!lib D n
p
3.J1 � J3/=J2 (3.184)

is the libration frequency. The first term on the right side of Eq. (3.183) is the
libration term, describing a pendular motion at the libration frequency. The second
term gives a sinusoidal error at the orbit rate in a non-circular orbit, a result of
the conflicting tendencies of rotational inertia to keep the pitch rate constant and
of gravity-gradient torque to keep the yaw axis pointing along the nadir. This term
grows very large near the pitch resonance case of!lib D n, which must be avoided.19

Its amplitude for the GEOS-3 spacecraft, with e D 0:0054, was 0.03ı [27].
Now consider the roll/yaw dynamics expressed in Eqs. (3.182a) and (3.182c).

The general solution of these two coupled second-order linear differential equation
is a superposition of four components of the form

�
 .t/

�.t/

�
D
�
 .0/

�.0/

�
est (3.185)

with coefficients satisfying initial conditions. Substituting Eq. (3.185) into the
roll/yaw dynamics gives a result expressible in matrix form as

�
J1s

2 C nŒ4n.J2 � J3/ � h� Œn.J2 � J1 � J3/ � h�s
�Œn.J2 � J1 � J3/ � h�s J3s

2 C nŒn.J2 � J1/ � h�
� �
 .0/

�.0/

�
est D 0

(3.186)

19In the exact resonance case, Eq. (3.182b) has the growing solution � D ent cos �.
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This has a nontrivial solution only if the determinant of the 2 � 2 matrix is zero,
which means that

J1J3s
4 C bs2 C c D 0 (3.187)

where

b D Œn.J2 � J1 � J3/ � h�2 C nJ3Œ4n.J2 � J3/ � h�C nJ1Œn.J2 � J1/ � h�
(3.188a)

c D n2Œ4n.J2 � J3/ � h�Œn.J2 � J1/ � h� (3.188b)

Stable motion in roll and yaw requires that none of the roots of Eq. (3.187) has a
positive real part. It is clear that if s is a root, then �s is also a root, so stability
requires all the roots to be purely imaginary numbers. The well-known solution of
Eq. (3.187) is

2J1J3s
2 D �b ˙

p
b2 � 4J1J3c (3.189)

Both of the solutions, s2, of Eq. (3.189) must be real and negative, with purely
imaginary square roots, for roll/yaw stability. This will hold if and only if

c > 0 and b � 2
p
J1J3c (3.190)

The first of these conditions is easier to satisfy; we see from Eq. (3.188b) that it
requires

h > nmax .4.J2 � J3/; .J2 � J1// or (3.191a)

h < nmin .4.J2 � J3/; .J2 � J1// (3.191b)

The second condition is harder to analyze, but a large enough positive or negative
momentum bias h can provide roll/yaw stabilization for any moments of inertia,
because b tends asymptotically to h2, while c is asymptotic to n2h2. In this
asymptotic limit Eq. (3.189) becomes

2J1J3s
2 D �h2


1˙

p
1 � 4J1J3n2=h2

�
� �h2Œ1˙ .1 � 2J1J3n2=h2/�

�
(
�2h2
�2J1J3n2

(3.192)

Comparison of the first root, ! D p�s2 D h=
p
J1J3, with Eq. (3.109) identifies

this as a nutation frequency. The second root gives ! D n, the frequency of the
quarter-orbit roll/yaw coupling. These two frequencies do not separate as cleanly
for general moments of inertia and bias angular momentum.
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Fig. 3.7 Stability region map for gravity-gradient stabilization. Unshaded areas are regions of
stable motion. The label DD identifies the DeBra-Delp region. Areas with horizontal hatching are
unstable in roll and yaw; those with vertical hatching are unstable in pitch. The dotted line is the
locus of the pitch orbital eccentricity resonance

We now investigate stability in the case of h D 0, a spacecraft with only gravity-
gradient stabilization, which has been analyzed in detail. In this case, Eq. (3.188)
reduces to

b D J1J3n2.1C 3�1 C �1�3/ (3.193a)

c D 4J1J3n4�1�3 (3.193b)

where

�1 � .J2 � J3/=J1 and �3 � .J2 � J1/=J3 (3.194)

The triangle inequality for principal moments of inertia, Eq. (3.73), implies that
�1 < �1 < 1 and �1 < �3 < 1. Note that �1 D 0 for axially-symmetric inertia
about the roll axis, �3 D 0 for symmetry about the yaw axis, and �1 D �3 for
symmetry about the pitch axis.

Figure 3.7 shows the stability regions in terms of these variables in the h D 0

case. The requirements for roll/yaw stability in this case are simply

�1�3 > 0 and 1C 3�1 C �1�3 � 4p�1�3 (3.195)
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These two requirements together demand that �1 > �1=3. Squaring the second
requirement and collecting terms gives the quadratic inequality

.3C �3/2�21 C 2.3 � 7�3/�1 C 1 � 0 (3.196)

The roots of the equality are

�1 D .3C �3/�2Œ.7�3 � 3˙ 4
p
3�3.�3 � 1/� (3.197)

Neither root is real if 0 < �3 < 1, so the inequality of Eq. (3.196) is satisfied
for any �1. Thus both parts of Eq. (3.195) are satisfied and roll/yaw stability is
assured for

0 < �3 < 1 and 0 < �1 < 1 (3.198)

The roots of Eq. (3.197) are real if �3 < 0, with the consequence that roll/yaw
stability requires �1 to be either greater than the larger root or less than the smaller
root. The smaller root is never greater than �1=3, though, so the only roll/yaw
stability region for negative �3 is

�1 < �3 < 0 and .3C �3/�2Œ.7�3 � 3C 4
p
3�3.�3 � 1/� � �1 < 0 (3.199)

This region, called the DeBra-Delp region [2], has J2 < J3 < J1. It has rarely
been employed in practice; almost all gravity-gradient-stabilized spacecraft are in
the range of inertia values specified by Eq. (3.198), i.e. J3 < J1 < J2.

It is always possible, and sometimes necessary, to supplement passive stabiliza-
tion with active control using thrusters, magnetic torquers or reaction wheels. Active
control effort can be minimized by starting with a stable configuration, however.
A single pitch wheel can be used to control pitch and even to stabilize the pitch
dynamics if J1 � J3. Roll/yaw coupling means that only two wheels are needed
for three-axis control. Quite often the two wheels are slightly misaligned from the
pitch axis so they can provide the momentum bias and also torques on two axes by
commanding them in the same or opposite directions. GOES I-M, for instance, had
two 51 Nms wheels with their spin axes tilted 1:66ı in the positive and negative yaw
directions from the negative pitch axis [24]. A much smaller 2.1 Nms wheel with its
spin axis along yaw protected against failure of one of the two larger wheels.

Problems

3.1. Consider the Hill frame shown in Fig. 2.8. The deputy position expressed in
Hill frame coordinates, denoted by rdhill , is given by

rdhill D rchill C �hill D .rc C x/or C y o� C z oh
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where rchill is the chief position vector expressed in Hill frame coordinates, �hill is
the relative position vector expressed in Hill frame coordinates and rc is the chief
position magnitude. The vectors expressed in inertial coordinates are given by

rdI D rcI C AI hill �hill

Using Eq. (3.14) derive an expression for the derivative of rdI in terms of rcI , AI hill,
�hill, and/or their derivatives, and the derivative of the true anomaly of the chief.

3.2. Another way to derive the quaternion kinematics in Eq. (3.20) is to use the
attitude matrix kinematics. Using the quaternion representation of the attitude
matrix given by Eq. (2.125) and the attitude matrix kinematics equation given by
PA D �Œ!��A, derive the quaternion kinematics equation.

3.3. Beginning with Eq. (3.21) and the definition of the quaternion in Eq. (2.124)
show that k!k D P# if the axis of rotation is fixed.

3.4. Prove that the inverse of Eq. (3.28) is given by Eq. (3.30).

3.5. Another way to derive the Euler angle kinematics in Eq. (3.38) is to use the
attitude matrix kinematics. Using the Euler angle representation of the attitude
matrix for a 1� 2� 3 sequence in Table 9.2 and the attitude matrix kinematics
equation given by PA D �Œ!��A, derive the matrix B.�;  / in Eq. (3.38) for a
1�2�3 sequence. Also, derive an analytical expression for B�1.�;  / for a 1�2�3
sequence.

3.6. Consider the following inertia matrix:

J cB D
2
4
100 0 0

0 50 0

0 0 25

3
5 kg-m2

Numerically integrate Eq. (3.81) with LcB D 03 for a time span of 2.5 h with the
following initial conditions:

a) !BIB .0/ D Œ0 0:01 0�T rad/s
b) !BIB .0/ D Œ0:01 0:0001 0:0001�T rad/s
c) !BIB .0/ D Œ0:0001 0:01 0:0001�T rad/s

Explain the differences between these cases.

3.7. Consider the angular velocity solution for the axially symmetric case given in
Eq. (3.104). Show that the closed-form solution for the quaternion is given by

q.t/ D z.t/˝ q0
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where z.t/ is given by

z.t/ D

2
664

h01 cos.˛/ sin.ˇ/C h02 sin.˛/ sin.ˇ/
h02 cos.˛/ sin.ˇ/ � h01 sin.˛/ sin.ˇ/
h03 cos.˛/ sin.ˇ/C sin.˛/ cos.ˇ/
cos.˛/ cos.ˇ/ � h03 sin.˛/ sin.ˇ/

3
775

with the definitions ˛ D 1
2
!pt , ˇ D 1

2
!`t , h0 D H0=kH0k D Œh01 h02 h03�

T ,
where !` D H=Jt is the inertial nutation rate and H0 D J!0 is the initial angular
momentum vector.

3.8. Instead of Eq. (3.139), we could write

HB D J �
B!

BI
B CH�

B

where

J �
B � QJB C

nX
`D1

J w
` and H�

B D
nX
`D1

J
k
` !

w
` w`

This form is sometimes more convenient for attitude estimation problems where the
wheel speeds are known better than the applied torques, but it is less well suited to
dynamics analysis. Show that the equivalent of Eq. (3.147) in this formulation is

P!BIB D .J �
B /

�1ŒLB � PH�
B �!BIB � .J �

B!
BI
B CH�

B/�

Then show that the dynamics of a spacecraft with constant H�
B are basically the

same as the dynamics for constant Hw
B using J �

B rather than JB for the MOI.

3.9. Prove the relationship shown in Eq. (3.175).

3.10. The roll/yaw motion of a gravity-gradient-stabilized spacecraft would exhibit
a resonant motion analogous to the pitch motion exhibited by Eq. (3.183) if the
solution of Eq. (3.189) gave s2 D �n2. Show that this roll/yaw resonance condition
for h D 0 is equivalent to �1.1 � �3/ D 0, and thus that the roll/yaw resonance
condition is never satisfied inside a region of stable motion.

3.11. Show that the condition for pitch resonance with orbit eccentricity, !lib D n,
is equivalent to �1 D .1C 3�3/=.3C �3/, which is the curve plotted in Fig. 3.7.

3.12. If the principal moments of inertia are all equal, both the gyroscopic and
gravity-gradient torques will vanish. Find the solutions of Eq. (3.189) in this case
without any assumptions on h except that it is nonzero.
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Chapter 4
Sensors and Actuators

This chapter will discuss several kinds of sensors and actuators used to determine
and control spacecraft attitude [26, 44, 54, 66]. The history of attitude sensor
development has emphasized increased resolution and accuracy as well as decreased
size, weight, and power (often abbreviated as SWaP). Actuator technologies have
also been scaled down to be appropriate for microsatellites and cubesats. We begin
with a brief introduction to redundancy considerations, and then consider some
specific sensors and actuators.

4.1 Redundancy

The space environment is stressful, and failures of ACS components have sometimes
led to the degradation or premature termination of space missions. A requirement for
many missions is the ability to survive the failure of any one component, a single-
point failure, without any loss of capability. This is often accomplished by providing
redundant components. Some designs leave the redundant equipment unpowered
until a failure of the operating unit occurs, a configuration usually referred to as a
cold backup configuration. If a primary unit fails in a cold backup configuration,
there is some delay from the time that the backup component is powered on until
it is available for use. A warm backup configuration, in which the redundant device
is powered on but not used, allows a quicker recovery in the event of failure of
the primary component. A hot backup configuration, with the redundant component
being used all the time, is often preferred for actuators such as reaction wheels or
CMGs, where the increased control authority is useful.

Redundant components can be connected in a block-redundant or a cross-
strapped fashion. This is illustrated schematically in Fig. 4.1, where Sensors A
and B might be a star tracker and a gyro, Actuators A and B could be two
reaction wheels, and the numerical subscripts represent redundant components.
An actual control system would likely incorporate more sensors and actuators,

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__4,
© Springer Science+Business Media New York 2014
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Fig. 4.1 Alternative redundancy configurations. (a) Block redundant. (b) Cross strapped

of course. The block-redundant system of Fig. 4.1a has two entirely separate strings;
a single-string system would just be the upper half of the figure. A failure in the
active string of a block-redundant system causes a switch to all the components of
another string. A failure in the cross-strapped system of Fig. 4.1b would generally
result in replacing only the failed unit with its backup. It can be seen that the
block-redundant and cross-strapped configurations are both single-fault-tolerant.
The block-redundant system would only tolerate a second fault if it were in the same
string as the first fault. We can see that cross-strapping usually leads to a more robust
system, because it can accommodate a greater range of multiple failures. There are
instances, however, where cross-strapping can reduce reliability by allowing a fault
in one component to propagate through the system.

Cross-strapping increases system complexity and cost. The increased expense is
especially prominent in the testing phase, where it is desirable to test all the paths
through the control system. It can be seen from the figure that the number of paths
in a block-redundant system increases linearly with the degree of redundancy, but
the number of paths increases exponentially in a fully cross-strapped system. It is
often cost-effective to build a system with limited redundancy and/or partial cross-
strapping. A careful reliability analysis must be performed as part of the design
process, to assess the degree of redundancy and cross-strapping needed to provide
the desired probability of completing the mission successfully.

Hardware redundancy is not the only option for protecting against single-point
failures. Instead, it is often possible to provide the function of a failed component
by using an entirely different component or set of components. This often involves
extra computation, and is referred to as analytic redundancy. One example is the
provision for attitude determination of the Tropical Rainfall Measuring Mission
(TRMM) spacecraft using gyros, Sun sensors, and a three-axis magnetometer in
place of the horizon sensor, which is described in Sect. 5.8. This contingency mode
was designed to cope with potential degradation of the horizon sensor, which never
occurred, but it enabled raising the TRMM altitude above the operational altitude of
the horizon sensor in order to conserve propellant and extend the mission.
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4.2 Star Trackers

4.2.1 Overview

Reference [66] describes several types of star trackers, many of which are no longer
used. Beginning around 1990, they were superseded by solid state star trackers that
track many stars simultaneously [43]. We will discuss only these state-of-the-art
trackers, many of which autonomously match the tracked stars with stars in an
internal catalog and use one of the methods described in Chap. 5 to compute the star
tracker’s attitude with respect to a celestial reference frame. A typical tracker has an
update rate between 0.5 and 10 Hz, a mass of about 3 kg and a power requirement on
the order of 10 W. It provides accuracy of a few arcseconds in the boresight pointing
direction, with larger errors for rotation about the boresight. References [43] and
[34] review the operation and performance of star trackers, and [64] provides a
detailed description of the star tracker used by the WMAP spacecraft.

A star tracker is basically a digital camera with a focal plane populated by either
CCD (charge-coupled device) or CMOS (complementary metal-oxide semicon-
ductor) pixels (picture elements). CCDs have lower noise, but CMOS has several
advantages. It is the same technology used for microprocessors, so the pixels can
include some data processing capabilities on the focal plane itself. Sensors taking
advantage of this capability are known as active pixel sensors (APS). CMOS is more
resistant to radiation damage than CCDs, and also provides the capability of reading
out different pixels at different rates, which is not feasible with CCDs.

Figure 4.2 shows the geometry of a star tracker, which is basically the geometry
of a pinhole camera. The x, y, and z axes constitute a right-handed coordinate
system with its origin at the vertex of the optical system and its z axis along the
optical axis, the tracker’s boresight. The focal plane is a distance f , the focal length
of the optics, behind the vertex. The optics are slightly defocused so a star image
covers several pixels. This enables the location of the centroid of a star image,
computed as the “center of mass” of the photoelectrons in an n�n block of pixels, to

y

v

x

z

s

u

(u0,v0)

(u,v)

f

Fig. 4.2 Star tracker
geometry
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be determined to an accuracy of a fraction of a pixel [34]. Optimal defocusing gives
a point spread function (PSF) with a width between 1.5 and 2 pixels, with n typically
equal to 2 or 3 [56, 57]. The resulting accuracy, �cent, of the centroid depends on
the star brightness, the exposure time, and various noise sources. Centroiding to an
accuracy of �cent D 0:1 pixel widths is generally achieved. Computing a weighted
center of mass may reduce the effect of noise and improve this accuracy [46].

The focal plane has a .u; v/ coordinate system whose origin can be at its center
or at one of its corners. The center of the focal plane, at the point where the z axis
pierces it, is designated by .u0; v0/. The unit vector s from the spacecraft to a star
can be computed from the focal plane coordinates of the centroid of its image as

s D 1p
f 2 C .u � u0/2 C .v � v0/2

2
4

u � u0
v � v0
f

3
5 (4.1)

It is conventional to define ˛ � tan�1.s2=s3/ and ˇ � tan�1.s1=s3/ so that

s D 1p
1C tan2 ˇ C tan2 ˛

2
4

tanˇ
tan˛
1

3
5 (4.2)

The focal plane coordinates of the centroid in terms of the star vector are

u D u0 C f s1=s3 D u0 C f tanˇ (4.3a)

v D v0 C f s2=s3 D u0 C f tan˛ (4.3b)

4.2.2 Modes of Operation

A star tracker has two modes of operation: tracking mode and initial attitude
acquisition. We will first discuss the more straightforward tracking mode, in which
the tracker is following several stars that have already been matched with catalogued
stars. After a fixed integration time, the star tracker reads out the number of
accumulated photoelectrons in the pixels in regions of interest (ROI) around the
expected positions of the tracked stars. The location of each ROI is based on the
star’s position at the time of previous readout and the estimated attitude motion
of the spacecraft in the intervening time, and its size depends on the accuracy of
the attitude knowledge. The brightest pixels in each ROI are identified, and the
appropriate n�n block of pixels is used to compute the centroid of each star. If a
tracked star moves out of the field of view (FOV), the tracker searches for another
star, preferably well separated from the other tracked stars. The a priori knowledge
of the approximate spacecraft attitude makes this search relatively easy.
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Initial attitude acquisition mode is more picturesquely known as lost-in-space
mode [62]. In this case the tracker searches the entire FOV for the brightest clusters
of pixels, and computes at least three centroids. The arc length separation between
these stars, their brightness, and some other computed properties are used to match
them with entries in the star catalog. This can be accomplished in a few seconds
using sophisticated algorithms for pattern matching and for rapidly searching the
catalog. Reference [62] provides a very useful survey of these methods and a
complete guide to the literature.

4.2.3 Field of View, Resolution, Update Rate

We will consider some trades in the design of star trackers, following the discussions
by McQuerry, et al. [43] and Liebe [34]. The resolution of the star tracker depends
on the number of pixels, the size of the FOV, and the accuracy of the centroiding.
We will consider a square focal plane of size Npixels�Npixels, typical values being
512�512 or 1;024�1;024. Assuming that the focal plane assembly is centered on
the optical axis, it images a spherical quadrilateral on the celestial sphere bounded
by the four great circles given by Eq. (4.2) with ˛ D ˙˛max and ˇ D ˙ˇmax. The
area of this FOV on the sphere is given by spherical geometry1 as

˝rectangle D 4 sin�1.sin˛max sinˇmax/ � .2˛max/.2ˇmax/ steradians (4.4)

The approximation is for small angles, and it is quite good, having an error of only
1 % for ˛max D ˇmax D 10ı. Optical distortions often make it desirable to ignore
stars in the corners of the FOV, reducing the useful area for ˛max D ˇmax to that of
a small circle of radius ˛max,

˝circle D 2.1 � cos˛max/ � ˛2max steradians (4.5)

Each pixel of a square focal plane subtends an angle 2ˇmax=Npixels in the small
angle approximation, so the resolution of the tracker is 2 �centˇmax=Npixels. Higher
resolution can be obtained by decreasing the size of the FOV, increasing the number
of pixels in the focal plane, or improving the centroiding. If the physical size of a
pixel and the field of view are held constant, adding pixels requires a larger focal
plane and thus a proportionally larger focal length, increasing the weight of the
optics. Pixel sizes have historically decreased, however, allowing more pixels in a
smaller focal plane.

Star trackers have several sources of errors. Optical distortions can be reduced
by calibration, and temperature-dependent errors can be minimized by controlling
the temperature of both the focal plane and the optics. Shot noise results from the

1This can be derived, for example, from Eqs. (A-12) and (A-22) in [66].
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random nature of photons, which obey Poisson statistics. Thus if a pixel accumulates
ne photoelectrons on average, this number will have a fluctuation with standard
deviation

p
ne . Dark current, the accumulation of electrons in the absence of light,

can also be minimized by cooling the focal plane, but this increases the power
demands of the tracker. Sometimes the tracker software must be modified to ignore
hot pixels, i.e. pixels with anomalously large dark currents. The effects of shot noise
and dark currents can be minimized by gathering more light to increase the number
of photoelectrons, which requires either increasing the aperture of the optics, with
concomitant weight gain, or increasing the integration time, i.e. the time allowed
for photoelectrons to accumulate before counting them. Increasing integration time
obviously slows the attainable update rate of star tracker data and also makes it more
difficult for the tracker to deal with spacecraft attitude motion.

IfNstars are tracked simultaneously, averaging of random errors reduces the errors
in the attitude estimate about the two axes perpendicular to the boresight by a factor
of N�1=2

stars , with resulting accuracy

��cross-boresight D 2 �centˇmax

Npixels
p
Nstars

(4.6)

For �cent D 0:1, Npixels D 1;024, and Nstars D 5, this gives 3.1 arcsec for a 20ı�20ı
FOV, and 1.3 arcsec for an 8ı�8ı FOV. The rotation angle around the tracker’s
boresight, often called roll, cannot be determined with equal accuracy. Its estimation
requires some separation between the tracked stars to provide a lever arm. The
methods of Sect. 5.5.2 can be used to show that roll accuracy is reduced relative
to the cross-axis accuracy by the root-mean-square (RMS) distance of stars from
the boresight (in radians).2 This distance for a large collection of stars uniformly
distributed over a square FOV is

ˇRMS D
vuut
R ˇmax

�ˇmax

R ˇmax
�ˇmax

.x2 C y2/dxdy
R ˇmax

�ˇmax

R ˇmax
�ˇmax

dxdy
D 2ˇmaxp

6
(4.7)

Using this RMS value gives the error in the rotation about the boresight as

��roll D
p
6 �cent

Npixels
p
Nstars

(4.8)

This error is independent of the size of the FOV; for �cent D 0:1, NP D 1;024, and
Nstars D 5, it is equal to 22 arcsec. We see that a large-FOV star tracker and a small-
FOV tracker with the same focal plane will produce equally accurate roll attitude
estimates, but Eq. (4.6) shows that the tracker with the smaller FOV will provide
better measurements of the cross-axis attitude.

2An example calculation is set as an exercise in Chap. 5.
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4.2.4 Star Catalogs

Both for lost-in-space star identification and for averaging of random errors, it is
desirable to track at least four stars, and preferably more. This drives the size of
the star catalog. The star availability requirement is usually stated as the probability
that at least N stars will be available in the tracker’s FOV. The number of stars
in the FOV can be assumed to follow a Poisson distribution, which says that the
probability of finding N stars in the FOV is given by

P.N/ D e� NN NNN

NŠ
(4.9)

where NN is the average number of stars in the FOV. Representative values following
from this assumption are that NN D 6:75 gives a 90 % probability of finding 4 stars
in the FOV, NN D 8 gives a 90 % probability of finding 5 stars in the FOV, NN D 10

gives a 99 % probability of finding 4 stars in the FOV, and NN D 11:7 gives a 99 %
probability of finding 5 stars in the FOV.

These values can immediately be used to estimate the required size of the star
catalog. The size of the celestial sphere is 4.180=/2 D 41;253 deg2, so the star
catalog should contain 11:7�41;253=64 > 7;500 stars to offer a 99 % probability of
finding 5 stars in a 8ı�8ı FOV. On the other hand, only 6:75�41;253=400 � 700

stars are needed to offer a 90 % probability of finding 4 stars in a 20ı�20ı FOV.
The required size of the catalog can then be used to estimate the magnitude range

of stars that must be tracked. Haworth [24] has counted the number of stars in the
Tycho star catalog [60] in visual magnitude ranges from �0.5 to 11.5. His values for
the number of stars of magnitude less than MV for 3:5 � MV � 10:5 can be fitted
to within 3 % by the simple relation

N.MV / D 3:9 exp.1:258MV � 0:011M2
V / (4.10)

The M2
V term in this expression gives a curvature to the plot of differential star

counts as shown, for example, in Figure 2 of [4], but neither Eq. (4.10) nor
Haworth’s estimates are reliable for magnitudes greater thanMV D 10:5. According
to Eq. (4.10), a catalog containing 7,542 stars must include stars as dim as MV D
6:4, while a catalog with 696 stars need only extend to MV D 4:3, a magnitude
signifying 100:4.6:4�4:3/ � 7 times as much energy flux as MV D 6:4.

These magnitude estimates are only approximate for two reasons. Firstly, the
magnitude of a star depends on the spectral response of the detector, and the
response of a CCD or APS pixel is not the same as that of the human eye.
For this reason, star catalogs are created using instrument magnitudes, which are
specific to the detector technology employed by the tracker. Secondly, stars are not
uniformly distributed on the celestial sphere, but tend to be concentrated in our
galaxy, the Milky Way. Because star densities are lower at the galactic poles, it is
often necessary to fill in a star catalog with dimmer stars in these regions.
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4.2.5 Proper Motion, Parallax, and Aberration

Star catalogs give the apparent positions of stars in the inertial ICRF frame with its
origin at the center-of-mass of the solar system, as discussed in Sect. 2.6.2. Stars
are not all absolutely stationary in this frame, and a few exhibit proper motion of as
much as several arseconds per year. Star catalogs include the proper motion of any
star for which it is significant, so the star location can be corrected for it when the
catalog is accessed. Stars with near neighbors, including double stars, are generally
omitted from star catalogs.

Parallax, the change in the apparent location of a star due to the change in the
position of the observer, is negligible for all but the nearest stars. For a satellite
in near-Earth orbit, the maximum parallax is equal to the radius of the Earth’s
orbit divided by the distance to the star. For the nearest star, Proxima Centauri at
a distance of 4.24 light years, the maximum parallax is 3.7 �rad, or 0.77 arcsec.
However, Proxima Centauri would likely be excluded from a star catalog because it
appears to form a triple star system with ˛ Centauri A and B [65]. In fact, some star
catalogs only include stars at distances greater than 100 light years from the solar
system, so that their parallax is less than 0.03 arcsec near the Earth, and less than
1 arcsec anywhere inside the orbit of Neptune [59].

Stellar aberration is a change in the apparent position of a star due to the velocity
of the observer. It is also known as astronomical aberration or Bradley aberration,
after James Bradley who showed in 1729 that it was a result of the finite speed of
light. Stellar aberration is not to be confused with distortions in optical systems such
as spherical aberration or chromatic aberration, which are completely unrelated.
We will explain aberration using Bradley’s classical argument, which gives a result
correct to the first order in v=c, the ratio of the observer’s velocity to the speed of
light. A complete explanation requires special relativity, but our analysis will avoid
this refinement [59].

Figure 4.3a illustrates Bradley’s argument in the ICRF frame, in which the star
tracker is moving with velocity v and the star is assumed to be stationary.3 The
vertex V and focal plane FP of the tracker are shown at times t1, when the starlight
passes through the effective pinhole at V , and t2 when it strikes the focal plane; the
tracker is displaced a distance v�t � v.t2� t1/ between these times. Light travels in
a straight line with speed c in an inertial reference frame, so the light from the star
at position S true passes through V.t1/ to FP.t2/. The vector from FP.t2/ to V.t1/
is c strue�t , as indicated on the figure. The star appears to the star tracker to have
come through V.t2/ to FP.t2/, so the apparent direction to the star is the direction
of the vector sum .c strue C v/�t . Thus the apparent unit vector to the star is

sapparent D strue C v=c
kstrue C v=ck (4.11)

3Proper motion is accounted for separately.
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Fig. 4.3 Stellar aberration. (a) Celestial reference frame. (b) Star tracker frame

It can be seen that the apparent star vector is tilted forward from the true star vector
in the direction of the velocity. A moving telescope with a very small field of view
must be tilted forward to catch the photons, much as someone walking in the rain
must tilt an umbrella forward to catch the raindrops.

Figure 4.3b illustrates an alternative derivation in an inertial reference frame
moving at velocity v with respect to the ICRF, where v is the instantaneous velocity
of the star tracker at the time the star is detected. The star tracker is stationary in
this frame, and the star moves with velocity �v. The apparent position of the star
is the direction from the tracker to the position of the star S.temit/ when the light
was emitted. The star moves a distance �v�t 0 � �v.tdetect � temit/ during the time
the light travels the distance c�t 0 from the star to the tracker. Thus the catalogued
position of the star at time tdetect is in the direction of .c sapparent � v/�t 0, namely

strue D sapparent � v=c
ksapparent � v=ck (4.12)

Equations (4.11) and (4.12) agree to order v=c, but disagree in order .v=c/2, which
is not surprising because they were derived using completely classical arguments.
Equation (4.12) has the appearance of a correction for the actual motion of the star
during the light transmission time, but that is not at all what it represents. The star
tracker certainly did not have a constant velocity while the light was traveling from
the star, and it is unlikely that the tracker even existed for most of that time.
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Both strue and sapparent are unit vectors, so the transformation between them is a
rotation. To see this explicitly, we rewrite Eq. (4.11) to first order in v=c as

sapparent � .strue C v=c/.1C 2strue � v=c/�1=2 � .strue C v=c/.1 � strue � v=c/
� strue C v=c � .strue � v=c/strue D .I3 � Œ�aber��/strue

� exp.�Œ�aber��/strue (4.13)

where

�aber � .v=c/ � strue (4.14)

The matrix exponential is the rotation vector representation of the rotation matrix,
as defined in Sect. 2.9.2. The direction of the rotation vector, �aber, is normal to the
plane containing the star vector and the velocity.

The principal component of the aberration for Earth-orbiting spacecraft, with
an amplitude of approximately 20 arcsec, is due to the motion of the Earth about
the Sun.4 Aberration arising from the motion of the spacecraft about the Earth is
less than 5 arcsec. Aberration can be neglected when matching stars for attitude
initialization, but it must be taken into account in determining the attitude of
any spacecraft with fine pointing requirements. A straightforward procedure is to
use Eq. (4.1) to compute an aberrated vector to a star from its centroid, then use
Eq. (4.12) to compute the true vector, which can then be used for precise attitude
estimation.

The difference in the aberration of two stars is

�aber
1 � �aber

2 D .v=c/ � .strue
1 � strue

2 / (4.15)

The maximum magnitude of this differential aberration is 2.v=c/ sin.�12=2/, where
�12 is the angular separation of the star vectors. The differential aberration between
the boresight direction and any star is a maximum of 25 % of the full aberration
for a tracker with a 20ı�20ı FOV, and 10 % of the full aberration for a tracker
with an 8ı�8ı FOV. Tracked stars are usually not at the extreme edge of the focal
plane, though, and they tend to be more or less uniformly distributed around the
focal plane, causing the average of their differential aberrations with respect to the
boresight to be small. Thus aberration is often computed assuming that all stars
are on the boresight of the tracker, i.e. at the point .u0; v0/ in the focal plane.

With the approximation that the aberration angle is the same for all stars,
an autonomous star tracker can compute its attitude with respect to the celestial
reference frame using the apparent star vectors without any aberration correction.
The resulting attitude matrix, Aaber, maps the star vectors from the celestial frame

4This is v=c � 100 �rad, so .v=c/2 � 0:002 arcsec, which indicates that a fully relativistic
analysis is not required.
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to their aberrated representations in the body frame, and thus it maps all reference
frame vectors to tracker frame values rotated by �aber. The true attitude matrix that
maps the reference vectors to their true values is found by rotating by the negative
of the aberration vector

Atrue D exp.Œ�aber
T ��/Aaber D Aaber exp.Œ�aber

I ��/ (4.16)

where the aberration angle is computed assuming the stars are all along the tracker’s
boresight. Note that the aberration correction is applied on the left or the right
side of the attitude matrix depending on whether �aber is represented in the tracker
frame T or the celestial frame I . Equation (2.63) establishes the equivalence of these
two procedures. If the star tracker uses the aberrated measurements to compute an
attitude quaternion qaber, the true quaternion is given to order v=c by

qtrue D 1q
1C k�aber

T k2

���aber
T

1

�
˝ qaber D 1q

1C k�aber
I k2

qaber ˝
���aber

I

1

�

(4.17)

If the star tracker is used to point a telescope or other instrument at an object that
is closely aligned with the tracker’s boresight, i.e. if the tracker is co-boresighted
with the instrument, we can often omit the aberration correction of both the tracker’s
attitude and the science target’s location, since these will cancel. Other instruments,
such as magnetometers or Sun sensors, will appear to be misaligned in this case,
but a 20 arcsec error may be insignificant compared with other error sources in their
measurements.

4.3 Sun Sensors

Sun sensors fall into two classes, coarse Sun sensors (CSSs) and fine or digital
Sun sensors (DSSs). The most common form of a CSS is a photocell (an eye) or
an assembly of photocells. To a good approximation, the output of a photocell is
an electric current directly proportional to the intensity of the light falling on it.
This may include light from Earth albedo or glint off nearby components of the
spacecraft, which can pull CSS outputs off the true Sun direction by as much as 20ı
in extreme cases [5,6]. The output of a CSS eye basically gives the average direction
to sources of light energy falling on it. It is usually an adequate approximation to
ignore these effects and treat the Sun as a point source, giving

Ij D
(
Imax.nj � s/ for nj � s > 0
0 for nj � s � 0

(4.18)
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where nj is the unit vector in the direction of the eye’s outward normal and s is
the unit vector in the direction from the spacecraft to the Sun. The response as a
function of angle can be calibrated, and compensation for albedo and glint can be
applied if necessary.

A second eye, with normal vector n�j D �nj , would have the output

I�j D
(
Imax.n�j � s/ D �Imax.nj � s/ for n�j � s D �nj � s > 0
0 for n�j � s D �nj � s � 0

(4.19)

so differencing the two outputs gives

Ij � I�j D Imax.nj � s/ for all nj � s (4.20)

Six CSS eyes, with normal vectors ˙nj ,˙nk , and˙n`, give

2
4
Ij � I�j
Ik � I�k
I` � I�`

3
5 D Imax

2
4

nj � s
nk � s
n` � s

3
5 D Imax

2
4

nTj
nTk
nT`

3
5 s (4.21)

If nj , nk , and n` are not coplanar, the Sun unit vector can be computed as

s D 1

Imax

2
4

nTj
nTk
nT`

3
5

�12
4
Ij � I�j
Ik � I�k
I` � I�`

3
5

D .Ij � I�j /.nk � n`/C .Ik � I�k/.n` � nj /C .I` � I�`/.nj � nk/
ImaxŒnj � .nk � n`/�

(4.22)

The eye currents are slowly varying functions of the Sun direction near normal
incidence, so the Sun vector is least well determined when the Sun vector is aligned
with one of the eye normal vectors. A six-eye CSS configuration (actually two
redundant sets of six eyes) was chosen for WMAP, for which the expected position
of the Sun was 22:5ı from the �z axis (see Fig. 7.4). The eyes were located at
the outer edges of the six solar panels pointing alternately 35:26ı up and 35:26ı
down from the x�y plane. Thus the unit normal vectors formed an orthogonal triad,
perpendicular to the faces of a cube with one of its body diagonals along the�z axis.

Fine Sun sensors have historically relied on arrays of slits (or reticles) with linear
photosensitive surfaces behind them. Sun sensors of this design are described in
Wertz [66] and in Sect. 7.7 of this text. A newer DSS design is basically a star tracker
with a pinhole in place of the light-gathering optics, which are not needed because
of the Sun’s brightness. The resolutions of DSSs range from 1 deg to better than
1 arc min. They have medium-size fields of view, a typical value being 128ı�128ı,
so CSSs are usually employed to maneuver the spacecraft to move the Sun into the
DSS FOV.
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Two-slit Sun sensors for spinning spacecraft are also described by Wertz [66].
A command slit parallel to the spin axis notes the time at which the slit azimuth
is in the Sun direction. A second measurement slit perpendicular to the spin axis
directs the sunlight to a linear array of detectors to determine the elevation of the
Sun unit vector with respect to the spin axis.

4.4 Horizon Sensors

Horizon sensors have been used on many Earth-orbiting spacecraft, especially on
Earth-pointing spacecraft. The Earth has a finite size and cannot be treated as a
point to any degree of accuracy, so a horizon sensor detects points on the Earth’s
horizon, as its name implies. The appearance of the Earth in visible wavelengths is
quite complicated; aside from having oceans, vegetation, and deserts, it has phases
like the Moon. The appearance is more uniform at infrared wavelengths, especially
in the narrow 14–16 �m emission band of the CO2 molecule, so almost all horizon
sensors are designed to detect infrared radiation in this range [66].

Horizon sensors are fundamentally of two types: static sensors that look in fixed
directions, and scanning sensors that move a small FOV of a detector across the
Earth. Static sensors, by their nature, are limited to Earth-pointing spacecraft at
small pitch and roll angles and in a limited altitude range. Static horizon sensors
looking at four points roughly equally spaced around the Earth’s horizon were
used by TRMM and by the Television Infrared Observation Satellite (TIROS) and
Defense Meteorological Satellite Program (DMSP) spacecraft. Scanning sensors
can use an oscillatory or rotational scan, with rotation provided by incorporating
the horizon scanner into a reaction wheel, by providing a separate mechanism, or
by using the spin of a spin-stabilized spacecraft.

Unlike star trackers and Sun sensors that detect objects with definite positions
in a reference frame, horizon sensors detect a point on the Earth’s horizon with
an a priori unknown location. Multiple horizon crossings can be used to find a
nadir vector by means discussed in [66], which contains a wealth of information
on horizon sensors. The nadir computed from horizon sensor measurements on an
oblate Earth is a better approximation to the geodetic nadir normal to the surface of
the ellipsoidal figure of the Earth than to the geocentric nadir pointing to the center
of the Earth. As shown in Sect. 2.6.3, these directions can differ by as much as
12 arc min. The accuracy of horizon sensors is limited to about 0:1ı, mainly by the
ability to accurately model the height of the CO2 layer in the Earth’s atmosphere.

4.5 Magnetometers

Most spacecraft magnetometers are fluxgate magnetometers [66], which are rela-
tively small, lightweight, rugged, and inexpensive. They have no moving parts and
do not require a clear field of view. They do require a well-modeled magnetic field
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if they are to be used as attitude sensors, which practically limits their use in this
capacity to low-Earth orbit. A magnetic field model is not needed if magnetometer
measurements are used only to compute magnetic torque commands.

Magnetometers measure the sum of the ambient field that is of interest and
any local fields produced by the spacecraft. Local fields can be produced by
ferromagnetic materials or by current loops in solar arrays, electric motors, payload
instruments, or most especially attitude control torquers. If the local fields are
known, they can be compensated for. If they are not known, the magnetometers
can be located far from the sources of magnetic contamination, on a deployable
boom if necessary, to take advantage of the 1=r3 falloff of a magnetic dipole field
(see Sect. 11.1).

4.6 Global Positioning System

Using the GPS for satellite navigation is now widespread. The GPS constellation
was originally developed to permit a wide variety of user vehicles an accurate
means of determining position for autonomous navigation [51]. The original
constellation included 24 space vehicles (SVs) in known semi-synchronous (12-h)
orbits, providing a minimum of six SVs in view for ground-based navigation. The
underlying principle involves geometric triangulation with the GPS SVs as known
reference points to determine the user’s position to a high degree of accuracy.
A minimum of four SVs is required so that, in addition to the three-dimensional
position of the user, the time of the solution can be determined and in turn employed
to correct the user’s clock. As of December 2012, 8 more satellites have been
added to the constellation, which was also changed to a nonuniform arrangement.
This allows nearly 9 SVs to be available at any time and location on the Earth,
which provides considerable redundancy and improvements in user location. The
number of available GPS satellites for space-based applications depends on the user
spacecraft’s altitude.

The fundamental signal in GPS is the pseudo-random code (PRC), which is a
complicated binary sequence of pulses. Each SV has its own complex PRC, which
guarantees that the receiver will not be confused with another SV’s signal. The GPS
satellites transmit signals on two carrier frequencies: L1 at 1575.42 MHz and L2 at
1227.60 MHz. The modulated PRC at the L1 carrier is called the Coarse Acquisition
(C/A) code, which repeats every 1,023 bits and modulates at a 1 MHz rate. The
C/A code is the basis for civilian GPS use. Another PRC is called the Precise (P)
code, which repeats on a 7-day cycle and modulates both the L1 and L2 carriers
at a 10 MHz rate. This code is intended for military users and can be encrypted.
Position location is made possible by comparing how late in time the SV’s PRC
appears relative to the receiver’s code. Multiplying the travel time by the speed of
light, one obtains the distance to the SV. This requires very accurate timing in the
receiver, which is provided by using a fourth SV to correct a “clock bias” in the
receiver’s internal clock.
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Fig. 4.4 GPS waves and wavefront angle

Attitude determination using phase differences of GPS signals received by
antennas located at different locations is a later development, even though the
original concept was proposed in 1976 by Spinney [61]. The first practical appli-
cation for GPS attitude determination was shown by Cohen in 1993 [15]. Cohen
and Trimble Navigation, Ltd. designed the TANS Vector sensor system, which was
then primarily used for airborne applications and tracked up to 6 satellites on 4
separate antennas. The Radar Calibration (RADCAL) satellite was the first satellite
to provide spaced-based GPS measurements that determined spacecraft attitude
using post-processed data. The first realtime space-based attitude determination
application was the Cryogenic Infrared Spectrometers and Telescopes for the
Atmosphere/Shuttle Pallet Satellite (CRISTA-SPAS) based on algorithms developed
by Lightsey [35].

Attitude determination using GPS signals is based on measuring the magnitude
of the carrier wavelength directly. At least two antennas are required to form a
“baseline” vector b expressed in body-frame coordinates, as depicted in Fig. 4.4.
It is assumed that the baseline distance is significantly smaller than the distance
to the GPS satellites so that planar waves are given to the receiver. The different
path lengths from each GPS satellite to the antennas at the two ends of the baseline
create a phase difference of the received signals. Note that an integer number of
cycles may be present in this phase difference if the baseline distance, given by
kbk, is larger than the GPS carrier wavelength, which is 19 cm for the L1 carrier.
This leads to the classic “integer ambiguity” problem [16]. There are several steps
required to perform attitude determination. A short list of the general ones is as
follows: (1) performing a “self survey” to determine several system parameters, such
as integer ambiguities, line biases, and baselines [50], (2) determining the sightline
vectors to all available GPS satellites, (3) maintaining a count of the integer cycles
as the attitude changes, and (4) using the known multiple baseline vectors, sightline
vectors, and phase differences (with integers removed) to determine the attitude,
which is discussed in Sect. 5.9.



138 4 Sensors and Actuators

Even though the theory behind GPS-based attitude determination is sound, its
practical implementation is susceptible to many error sources. One of the largest
error sources is its susceptibility to reflections off spacecraft, called multipath [10].
This essentially causes a slowly-varying bias in the measurements with time
constants determined by spacecraft dynamics relative to the GPS constellation.
Other error sources include ephemeris errors, satellite clock errors, ionosphere
errors, troposphere errors, and receiver errors [52]. The accuracy of GPS attitude
determination is a function of the error sources, accuracy of the self survey,
lengths of the baselines, and satellite geometry. Another approach for GPS attitude
determination involves using the signal-to-noise ratio, which can be accomplished
using a single antenna [3, 36, 39, 58]. Pseudolites, which are small transceivers that
are used to create local GPS-like signals, can also be used for attitude determination.
However, this leads to more complicated solutions because planar wavefronts cannot
be assumed in general [49].

A GPS receiver built for terrestrial applications will not work properly for space
applications in general. Lightsey [35] discusses the issues involved with modifying
a GPS receiver for space. The first issue is that higher vehicle velocities exist
in space than for ground and air applications. For example, for low-Earth orbit
applications this results in Doppler shifts that are more than 10 times greater than
those observed from the ground and Doppler shift rates that can be more than 100
times higher. The conclusion from these facts is that the carrier and code tracking
loops must be redesigned for space applications. The next issue is the “full sky
pointing” problem. For ground applications one side of the vehicle generally points
in the same direction at all times. This is vastly different for rotating spacecraft,
which may cause significant outages if all the hemispherical antennas are pointed
in the same direction. This can be mitigated by using a carrier phase measurement
correction, which Lightsey defines as a design of a “non-aligned” antenna array.
Another issue is that the GPS electronics, especially the processor units, must be
redesigned to handle the harsh space environment. Other issues include vibrational
effects on the antennas, which can change their baseline length, and larger multipath
errors than ground applications due to more reflections from the metallic spacecraft
components. All of these issues can decrease the attitude performance if they are
not properly accounted for in the GPS receiver design.

4.6.1 GPS Satellites

The onboard GPS satellite information is usually given by a GPS ephemeris. For
simulation purposes a less-precise almanac is used,5 which provides orbital element
information, including the time of applicability, ta, eccentricity, e, inclination, i ,

5The U.S. Coast Guard Navigation Center maintains a website that contains GPS almanacs, and as
of this writing this website is given by http://www.navcen.uscg.gov/.

http://www.navcen.uscg.gov/
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Table 4.1 Equations to compute GPS ECEF positions over time

a D p
a2 Semimajor Axis

n D
r
�

a3
Computed Mean Motion

tk D t � ta Time Since Applicability
Mk D M0 C tk n Mean Anomaly
Ek D Mk C e sinEk Solve Kepler’s Equation for Ek

tan
�k

2
D
r
1C e

1� e
tan

Ek

2
True Anomaly

˝k D ˝0 C P̋ tk � !e t Corrected Ascending Node
	k D vk C ! Argument of Latitude
rk D a .1� e cosEk/ Orbital Radius

r0k D
�
rk cos	k
rk sin	k

�
Orbit Plane Position

rEk D
2
4

cos˝k � cos i sin˝k

sin˝k cos i cos˝k

0 sin i

3
5 r0k ECEF Position

semimajor axis, a, right ascension, ˝0, rate of right ascension, P̋ , argument of
perigee, !, and mean anomaly, M0. See Chap. 10 for a discussion of the orbital
elements. We should note that the right ascension is given with respect to the prime
meridian, which allows us to compute the ECEF position directly. It should be noted
that GPS time is based on the atomic standard time and is continuous without
the leap seconds that Universal Time (UT) uses to account for the non-smooth
rotation of the Earth. GPS epoch is midnight of January 6, 1980, and GPS time
is conventionally represented in weeks and seconds from this epoch. The GPS week
is represented by an integer from 0 to 1,023. A rollover occurred on August 22,
1999, so that 1,024 needs to be added for references past this date.

To simulate the GPS sightline vector a simple algorithm using GPS almanac
data is sufficient. The broadcast ephemeris, which contains more parameters such
as amplitude of second-order harmonic perturbations [32], should be used if more
accuracy is needed. For simulation purposes, counting the days past GPS epoch to
determine UT is adequate (ignoring leap seconds, but not leap days). The position
vector of the GPS satellite is denoted by rE and the position of the GPS receiver
is denoted by pE . Table 4.1 gives the equations necessary to determine the GPS
ECEF positions. The variable !e D 7:292115 � 10�5 rad/s is the Earth’s rotation
rate given from WGS-84, � D 3:98600441� 1014 m3/s2 is the Earth’s gravitational
parameter, and tk is the time past the time of applicability (the subscript k denotes
the kth time-step). The sightline vector is computed using

sj D
rEj � pE

krEj � pEk (4.23)

where the subscript j now denotes the j th available GPS satellite.
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4.7 Gyroscopes

Gyroscopes on spacecraft are almost exclusively used in strapdown mode, which
means that the gyro is solidly attached to the spacecraft rather than being used to
control a separate gimbaled platform. Gyros generally fall into two broad classes:
rate gyros that read angular rates, and rate-integrating gyros (RIGs) that measure
integrated rates or angular displacements [19,44,54]. Gyros can also be classified by
the physical mechanisms they use: spinning-mass gyros, optical gyros, or Coriolis
vibratory gyros (CVGs).

Before the 1980s, all operational gyros were spinning-mass gyros, which depend
on the tendency of the angular momentum of a rotating mass to remain fixed in
inertial space. These are used in torque rebalance mode, meaning that the angular
momentum is held constant in the spacecraft frame. Equation (3.80) tells us that the
torque required to keep the gyro’s angular momentum HB constant is

LB D !BIB �HB (4.24)

The two components of!BIB along the input axes perpendicular to HB determine the
required two components of LB along the output axes, given by the cross products
of the input axes with the direction of HB . Single-axis gyros supply and sense one
of these torques electromagnetically, depending on mechanical pivots to provide
the other torque, while two-axis gyros provide and sense both of these torques
electromagnetically.

The most accurate spacecraft gyros have been single-axis floated gyros, as
depicted in Fig. 4.5. These have the gyro rotor and its drive motor contained
in a cylindrical “can,” with the rotor’s spin direction along one of its diameters.
The perpendicular diameter is the input axis, and the output axis is directed from
one end of the can to the other. The can is supported by pivots at its ends and by
the buoyancy of a fluid having a density equal to the total mass of the can and its
contents divided by its volume. Neutral buoyancy allows the pivots to control two

Rotor Output
Axis

Can Sensing & Control
Pickoff

CaseFluid

Pivot
Pivot

Fig. 4.5 Single-axis floated gyro



4.7 Gyroscopes 141

degrees of freedom of the can while leaving it essentially free to rotate about its
output axis. This rotation is sensed and controlled electromagnetically to measure
the angular rate about the input axis. In order to minimize perturbations on the can,
the power and signals to drive and sense the gyro rotation are carried through the
flotation fluid by thin flexible leads.

Two-axis gyros are called dry tuned-rotor gyros (DTGs), because they are not
floated [44]. The motor is rigidly fixed to the spacecraft, and the rotor is attached
to the shaft by gimbals and torsion springs carefully designed and tuned to the spin
speed of the rotor to minimize their effective restoring torque, allowing the rotor to
flex in two directions. The rotor deflection is sensed on two axes and controlled on
the two cross-product axes electromagnetically. DTGs have come very close to the
performance of floated gyros, but never achieved performance equivalent to the best
floated gyros. However, their relative simplicity and ruggedness led to their use on
a great number of spacecraft in the three decades beginning around 1978.

The most common failure modes of spinning-mass gyros are due to problems
with the rotor bearings. The floated gyros on HST, which use bromotrifluoroethylene
(BTFE) as the flotation fluid to provide the required high density, experience a
different failure mode. Corrosion of the silver-copper alloy flex leads by the BTFE
has caused multiple gyro failures requiring on-orbit replacement during Space
Shuttle servicing missions [29].

The problems with spinning-mass gyros, including the difficulty and expense of
their fabrication, has led to the development of alternative rate-sensing technologies,
specifically optical gyros and CVGs. Optical gyros depend on the Sagnac effect,
which applies to light traveling in opposite directions around a closed path that
is rotating with respect to inertial space [14, 44]. Consider a circular path of
radius R in a plane that is rotating with clockwise angular velocity ! about an axis
perpendicular to the plane. Light making a complete circuit clockwise must travel a
distance

LC D c tC D 2RCR! tC (4.25)

where tC is the time to complete the circuit and c is the speed of light. For light
traveling counterclockwise, we have

L� D c t� D 2R �R! t� (4.26)

The difference in the path lengths is

�L D LC � L� D c.tC � t�/ D c
�

2R

c �R! �
2R

c CR!
�

D 4cR2 !

c2 �R2 !2 �
4R2 !

c
D 4A!

c
(4.27)

This equation generalizes to noncircular and nonplanar paths, with A being the
area enclosed by the path projected onto the plane perpendicular to the angular
velocity [55].
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The Sagnac path difference can in principle be detected as a phase difference
�� D 2�L=	 rad, where 	 is the wavelength of the light. However, detecting a
rate of 0.001 deg/h D 4:85 nrad/s using helium-neon laser light with a wavelength
of 632.8 nm in a circular loop withR D 0:1m requires measuring a phase difference
of only 2 � 10�11 rad, which is impossible. There are two ways to circumvent this
problem. The first is to make the light travel around the closed path many times,
by using many turns of an optical fiber. An interferometric fiber optic gyro (IFOG)
using 5,000 turns for a total fiber length of 3,142 m only has to measure a phase
difference of 10�7 rad for the example above, which is feasible.6 We will discuss
IFOGs later.

The second way to circumvent the problem of measuring small phase differences
is to use an active laser medium in the path to replace the phase measurement by a
frequency measurement. This is the basic idea of a ring laser gyro (RLG). The rota-
tion splits the laser wavelength and frequency into clockwise and counterclockwise
modes

�˙ D c

	˙ D
kc

L˙ (4.28)

where k is the integer number of wavelengths in the cavity. Then7

�� D �� � �C D kc

L� �
kc

LC D
kc�L

LCL� �
kc�L

L2
D 4A!

L	
(4.29)

where we have substituted Eq. (4.27) and k D L=	 to obtain the last form. This
form holds for a path of any shape, where L is the perimeter and A is the enclosed
area projected onto the plane perpendicular to the rotation. Most RLGs have paths
in the shape of an equilateral triangle with reflecting mirrors at the vertices. If ` is
the length of one side then L D 3`, A D .p3=4/`2, and

�� D `!p
3	

(4.30)

With 	 D 632:8 nm and ` D 0:1 m, this gives �� D .9:1 � 104/!, which is equal
to 442�Hz for ! D 0:001 deg/h. The relative ease of detecting small frequency
differences has led to the widespread use of RLGs on aircraft and, to a lesser extent,
on spacecraft.

An RLG has difficulty in detecting very slow rotations, because nonlinear
interactions between the clockwise and counterclockwise oscillations cause their
frequencies to lock in to each other. This is usually solved by introducing a
sinusoidal dither of the gyro about its input axis, with typical frequency of 400 Hz

6Equation (4.27) assumes that the light travels through a vacuum. The fiber’s index of refraction
complicates the analysis, but does not change the order-of-magnitude estimates.
7Note that � is measured in Hz, and ! in rad/s.
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and amplitude of 0.1ı [44]. Using laser oscillations with four frequencies traveling
in a non-planar path can avoid lock-in without dithering. Although RLGs have
established themselves as the best rate sensing technology in terms of performance
and reliability in a wide range of applications, they have not been perfect. A slow
decrease of laser intensity, thought to be a combined effect of degradation of the
mirror surfaces and of the lasing medium, has been observed on many RLGs. This
is less of a problem on aircraft, which are serviced periodically, than on spacecraft.

Although the basic concept of the IFOG is simple, the implementation is not.
Reference [45] provides many details. By the mid 1980s, the IFOG had become
competitive with the RLG, despite its lower sensitivity, typically about 0.1 deg/h
as contrasted with 0.001 deg/h achieved by RLGs. The reason for the IFOG’s
success includes some desirable features like light weight, small size, limited
power consumption, projected long lifetime and, not least, lower price. Continuing
development has led to increased sensitivity, although a market for navigation-
grade IFOGs has not yet materialized; economic forces have concentrated IFOG
development to low price, medium sensitivity applications.

CVGs detect the motion of a vibrational mode in a structure caused by Coriolis
forces. The first CVG to be developed was the hemispheric resonator gyroscope
(HRG), which uses a flexural mode in a thin wine-glass-shaped resonator anchored
by a thick stem. Coriolis forces arising from rotation about the stem axis cause a
slow precession of a standing wave around the resonator with an angular rate that
differs from the input rate. An HRG has two modes of operation: a rebalance
mode that applies forces to keep the standing wave pattern fixed and a less accurate
“whole-angle” mode that measures the free motion of the pattern. HRGs have
achieved accuracy equal to that of the best DTGs and have found many spacecraft
applications.

CVGs manufactured with micro-electro mechanical systems (MEMS) technol-
ogy are the newest development. These are packaged similarly to other integrated
circuits with a single part often including gyroscopic sensors for multiple axes. The
resonant structures of MEMS gyroscopes are lithographically constructed tuning
forks, vibrating wheels, or resonant solids of various designs. MEMS gyros have
low cost, low mass, and low power requirements, but also low performance and a
short lifetime compared to other gyros. MEMS gyros using components qualified
for the radiation environment of space have only recently become available.

4.7.1 Gyro Measurement Model

A widely used three-axis continuous-time mathematical model for a rate-integrating
gyro is given by [20]

!.t/ D !true.t/C ˇtrue.t/C �v.t/ (4.31a)

P̌ true
.t/ D �u.t/ (4.31b)



144 4 Sensors and Actuators

where !true is the true rate, ! is the measured rate, ˇtrue is the true bias or drift, and
�v and �u are independent zero-mean Gaussian white-noise processes with

E
˚
�v.t/�

T
v .�/

� D �2v ı.t � �/I3 (4.32a)

E
˚
�u.t/�

T
u .�/

� D �2u ı.t � �/I3 (4.32b)

where ı.t � �/ is the Dirac delta function defined as

ı.t � �/ D 0 if t ¤ �
Z 1

�1
ı.t � �/d� D 1

(4.33)

A more general gyro model includes scale factors and misalignments, which can
also be estimated in realtime [48, 53]. The general gyro model including scaling
factors and misalignments is given by

! D �I3 C S true
	
!true C ˇtrue C �v (4.34)

with S true denoting the matrix of scale factors and misalignments.
Both Eq. (4.31) and Eq. (4.34) represent continuous-time gyro models but in

practice discrete-time gyro measurements are employed and therefore discrete-
time models are required. Because the white-noise processes are assumed to be
uncorrelated we can treat each axis separately. Dividing the single-axis version of
Eq. (4.31a) by the gyro sampling interval, �t , and integrating gives

1

�t

Z t0C�t

t0

!.t/ dt D 1

�t

Z t0C�t

t0

�
! true.t/C ˇtrue.t/C �v.t/

�
dt (4.35)

Approximating the measured and true values as constant over the interval yields8

!.t0 C�t/ D ! true.t0 C�t/C 1

�t

Z t0C�t

t0

�
ˇtrue.t/C �v.t/

�
dt (4.36)

Integrating Eq. (4.31b) gives

ˇtrue.t0 C�t/ D ˇtrue.t0/C
Z t0C�t

t0

�u.t/ dt (4.37)

The variance of the gyro drift bias is given by

E
˚
Œˇtrue.t0 C�t/�2

� D E
(�
ˇtrue.t0/C

Z t0C�t

t0

�u.t/ dt

�2)
(4.38)

8Note that we cannot make the same assumption for the stochastic variables.
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Using E f�u.t/�u.�/g D �2u ı.t � �/ gives

E
˚
Œˇtrue.t0 C�t/�2

� D E ˚Œˇtrue.t0/�
2
�C �2u �t (4.39)

Therefore, the bias can be simulated using

ˇtrue
m .t0 C�t/ D ˇtrue

m .t0/C �u�t
1=2Nu (4.40)

where the subscript m denotes a modeled quantity and Nu is a zero-mean random
variable with unit variance.

The bias at time t is given by

ˇtrue.t/ D ˇtrue.t0/C
Z t

t0

�u.�/ d� (4.41)

Substituting Eq. (4.41) into Eq. (4.36) gives

!.t0 C�t/ D zC 1

�t

Z t0C�t

t0

Z t

t0

�u.�/ d� dt C 1

�t

Z t0C�t

t0

�v.t/ dt (4.42)

where z � ! true.t0 C �t/ C ˇtrue.t0/. The correlation between the drift and rate
measurement is given by

E
˚
ˇtrue .t0 C�t/!.t0 C�t/g D E


�
ˇtrue.t0/C

Z t0C�t

t0

�u.�/ d�

�

�
�
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C 1

�t

Z t0C�t

t0

Z t

t0

�u.�/ d� dt C 1

�t

Z t0C�t

t0

�v.t/ dt

��
(4.43)

Since �u.t/ and �v.t/ are uncorrelated we have

E
˚
ˇtrue.t0 C�t/!.t0 C�t/

� D E ˚zˇtrue.t0/
�

C �2u
�t

Z t0C�t

t0

Z t0C�t
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Z t
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D E ˚zˇtrue.t0/
�C �2u

�t

Z t0C�t

t0

.t � t0/ dt

D E ˚zˇtrue.t0/
�C 1

2
�2u �t (4.44)

Equation (4.44) can be satisfied by modeling the gyro measurement using

!m.t0 C�t/ D ! true
m .t0 C�t/C ˇtrue

m .t0/C 1

2
�u�t

1=2Nu C c Nv (4.45)
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where the quantity c is yet to be determined and Nv is a zero-mean random
variable with unit variance. Note that Eq. (4.45) can be proven by evaluating
E fˇtrue

m .t0 C�t/!m.t0 C�t/g. Solving Eq. (4.40) for Nu and substituting the
resultant into Eq. (4.45) yields

!m.t0 C�t/ D ! true
m .t0 C�t/C 1

2
Œˇtrue
m .t0 C�t/C ˇtrue

m .t0/�C c Nv (4.46)

Note that 1
2
Œˇtrue
m .t0 C�t/C ˇtrue

m .t0/� is the “average” of the bias at the two times.
This term is present due to the fact that the trapezoid rule for integration is exact for
linear systems. To evaluate c we compute the variance of the rate measurement:
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��
(4.47)

Since �u.t/ and �v.t/ are uncorrelated and usingE f�v.t/�v.�/g D �2v ı.t��/, then
Eq. (4.47) simplifies to
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!2.t0 C�t/

� D �2u
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ı.t � �/ d� dt (4.48)

The quadruple integral in this equation is equal to
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(4.49)

Therefore, Eq. (4.48) reduces down to

E
˚
!2.t0 C�t/

� D E ˚z2�C 1

3
�2u �t C

�2v
�t

(4.50)

The variance of the modeled rate measurement in Eq. (4.45) is given by

E
˚
!2m.t0 C�t/

� D E ˚z2m
�C 1

4
�2u �t C c2 (4.51)
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Comparing Eq. (4.51) to Eq. (4.50) gives

c2 D �2v
�t
C 1

12
�2u �t (4.52)

Hence, the modeled rate measurement is given by

!m.t0 C�t/ D ! true
m .t0 C�t/C 1

2
Œˇtrue
m .t0 C�t/C ˇtrue

m .t0/�

C
�
�2v
�t
C 1

12
�2u �t

�1=2
Nv

(4.53)

Generalizing Eqs. (4.40) and (4.53) for all times, dropping the subscript m, and
considering all three axes gives the following formulas for the discrete-time rate
and bias equations:

!kC1 D !true
kC1 C

1

2
.ˇtrue

kC1 C ˇtrue
k /C

�
�2v
�t
C 1

12
�2u �t

�1=2
Nvk (4.54a)

ˇtrue
kC1 D ˇtrue

k C �u�t
1=2Nuk (4.54b)

where the subscript k denotes the kth time-step, and Nvk and Nuk are zero-mean
Gaussian white-noise processes with covariance each given by the identity matrix.
Replacing !true

kC1 with .I3 C S true/!true
kC1 in Eq. (4.54a) provides the discrete-time

model for Eq. (4.34).

4.8 Reaction Wheels

Reaction wheels are used as the primary attitude control actuators on most
spacecraft. Momentum-bias spacecraft may use one or two reaction wheels, but
full three-axis attitude control requires three or more wheels. Although numerous
reaction wheels have operated flawlessly for decades, reaction wheel failures have
been a problem on many space missions. Providing extra reaction wheels for
redundancy gives some protection, but failure of one reaction wheel is often
followed by failure of other wheels of the same design on the same spacecraft. For
example, four reaction wheels failed on the Far Ultraviolet Spectroscopy Explorer
(FUSE) spacecraft in 2001, 2002, 2004, and 2007; and two each on Hayabusa in
July and October 2005, Dawn in 2010 and 2012, and Kepler in 2012 and 2013 [17].
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4.8.1 Reaction Wheel Characteristics

Reference [8] provides an overview of reaction wheel design. A reaction wheel
assembly contains a rotating flywheel, typically supported by ball bearings, an
internal brushless DC electric motor, and associated electronics. Reaction wheels
are produced with a wide range of capabilities: maximum torque from 0.01 to
1.0 Nm, maximum angular momentum from 2 to 250 Nms, and maximum rotational
speeds from 1,000 to 6,000 rpm. A vendor will frequently use the same flywheel and
bearing assembly to construct a wheel with high angular momentum capacity and a
different wheel with high torque capability. The back electromotive force developed
at the high speeds required to provide high angular momentum makes it difficult to
provide high torque in the same wheel.

The motor drives of some reaction wheels accept a torque command. Other
reaction wheels have an internal closed-loop controller that holds the reaction wheel
speed at a commanded value. The control electronics of some wheels are integral
with the wheel unit, while others locate the controller in a separate electronics box.
A reaction wheel is generally provided with a digital or analog tachometer, or both,
to provide a reading of the wheel’s rotational speed.

Wheel friction, or drag, is usually modeled as a sum of viscous and Coulomb
components

Lw
drag D ��v !w � �c sign.!w/ (4.55)

where the coefficients �v and �c are empirically determined and can exhibit
temperature dependence [8]. This model is adequate in many applications, but does
not give a good description of friction at low speeds, especially when crossing
zero speed. A dynamic model of friction incorporating hysteresis is required
to represent these phenomena adequately. Reference [1] provides an excellent
review of the issues involved in characterizing and modeling friction, and of the
historical development of friction modeling. The first dynamic friction model to
find widespread applications was the Dahl model, introduced in 1968 [18]. Many
models have been proposed since, including the LuGre model developed by control
groups in Lund and Grenoble [2, 12]. This modification of the Dahl model allows
frictional forces to be larger at low speeds, an effect known as the Stribeck effect or
as stiction. Increasing drag torque is often an indication of potential wheel failure,
so it is a general practice to carefully monitor the drag torque on reaction wheels on
orbiting spacecraft.

4.8.2 Reaction Wheel Disturbances

Although reaction wheels are invaluable for providing fine pointing control of
many spacecraft, they are also one of the major sources of attitude disturbances.
References [9] and [31] provide excellent overviews of the various categories of
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reaction wheel disturbances, which can be classified as radial forces, axial forces,
radial moments, and axial moments. Disturbance forces perturb the spacecraft’s
attitude by creating an r�F torque, where r is the vector from the spacecraft’s center
of mass to the point of application of the force. Thus the effects of reaction wheel
force disturbances can be minimized by locating the wheel close to the spacecraft’s
center of mass. The effects of disturbance moments are independent of the location
of the wheel.

Deviations of the wheels from the assumption of perfect balance made in
Sect. 3.3.5.1 are a principal contributor to disturbances. These deviations are
classified as static imbalance or dynamic imbalance. Static imbalance is the
condition that the wheel’s center of mass is not on the axis of rotation. In this case,
the spacecraft must provide, through the bearing assembly, the centripetal force
needed to continuously accelerate the center of mass in a circular motion about the
axis of rotation. If Mw is the mass of the rotor, !w is the magnitude of its angular
velocity, w is a unit vector along its axis of rotation, and x is a vector from the axis
to the wheel’s center of mass, the static imbalance force is

Fs DMw.!w/2w � .w � x/ D �Mw.!w/2

2
4
x1
x2
0

3
5 (4.56)

where the last form assumes that w D Œ0 0 1�T . This is a radial force, constant
in the wheel frame and rotating with angular velocity !w in the spacecraft frame.

It has magnitude Fs D Us.!w/2, where the static imbalance Us �Mw
q
x21 C x22 is

proportional to the perpendicular distance from the axis to the center of mass. The
SI unit for static imbalance would be kg-m, but it is usually given in g-cm (or in
ounce-inches) because it is so small.

Dynamic imbalance is the condition that the axis of rotation of the wheel is not
a principal axis. In this case, keeping the wheel rotating at a constant rate !w about
the spin axis, which we assume to be w D Œ0 0 1�T , requires a torque

Ld D ! �H D .!w/2w � .Jw/ D .!w/2

2
4
�J23
J13
0

3
5 (4.57)

This is a radial moment, constant in the wheel frame and rotating with angular
velocity !w in the spacecraft frame. It has magnitude Ld D Ud.!

w/2, where

Ud �
q
J 223 C J 213 is called the dynamic imbalance. It is generally specified in

g-cm2, although the proper SI unit would be kg-m2.
In addition to static and dynamic imbalance, a reaction wheel also exhibits struc-

tural dynamic modes resulting from compliance in the bearings. These modes fall
into the three classes illustrated in Fig. 4.6: an axial translation mode, modes
corresponding to radial translation in two orthogonal directions, and rocking modes
about two orthogonal rocking axes. If the bearing compliance is isotropic, the two
radial translation modes will have equal frequencies.
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a b c

Fig. 4.6 Structural dynamic modes of a reaction wheel. (a) Axial translation. (b) Radial transla-
tion. (c) Rocking

The rocking modes interact with the rotation of the wheel to give whirl modes.
Assume that the rotor’s actual spin axis is misaligned by a small rotation vector ı# .
Then the wheel’s angular momentum in a reaction wheel frame in which the nominal
spin axis of the wheel is Œ0 0 1�T is

H D diag
h
J? J? J ki� ı P# C .I3 � Œı#��/

h
0 0 J k!w

iT

D
2
4
J?ı P#1 � J k!wı#2
J?ı P#2 C J k!wı#1
J k.ı P#3 C !w/

3
5 (4.58)

to first order in ı# , where the ı P# term comes from Eq. (3.45). Note that ı#3 only
appears in this equation in the form of its derivative. We can absorb ı P#3 into !w

to eliminate ı#3 completely from the analysis. We can treat the wheel frame as
inertial, because its motion is negligible compared to the motion of the rotor. Thus
the equations of motion are

PH D
2
4
J?ı R#1 � J k!wı P#2
J?ı R#2 C J k!wı P#1

J k P!w

3
5 D L D �J?!20

2
4
ı#1
ı#2
0

3
5 (4.59)

The last equality assumes isotropic elastic restoring forces with coefficients on both
axes which we choose to write as J?!20 . The third component of the equation says
that !w is constant, which is not surprising. We are looking for periodic solutions,
so we write

�
ı#1.t/

ı#2.t/

�
D
�
ı#1.0/

ı#2.0/

�
ei!t (4.60)

Substituting this into Eq. (4.59) gives

0 D
�
J?.�!2 C !20/ �iJ k!w!

iJ k!w! J?.�!2 C !20/
� �
ı#1.0/

ı#2.0/

�
(4.61)
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Fig. 4.7 Frequencies of radial moment disturbances

The determinant of the 2� 2 matrix must vanish for a solution to exist, which gives

0 D J?.�!2 C !20/˙ J k!w! D �J?.!2 � !20 	 2�!w!/ (4.62)

where we have written J k D 2�J?. Note that � < 1 by the triangle inequality for
principal moments, and that � D 1 for an ideal infinitely thin disk. The frequencies
of the positive and negative whirl modes are the roots of this quadratic equation;

!˙ D
q
.�!w/2 C !20 ˙ �!w (4.63)

We choose the positive sign of the square root because frequencies are convention-
ally defined to be positive. The higher frequency mode is a forward whirl, where the
whirl is in the same direction as the wheel rotation, while the lower frequency mode
is a negative whirl, with motion opposed to the wheel rotation [9].

It is useful to plot the frequencies of the disturbances as a function of the
reaction wheel speed in a Campbell diagram. Figure 4.7 is an example showing
the radial moment disturbance frequencies of a notional reaction wheel. The radial
moment diagram is the most interesting case because it exhibits the whirl modes.
The fundamental mode ! D !w is the disturbance arising from dynamic imbalance.
The first harmonic ! D 2!w is also apparent, as are frequencies at non-integral
multiples of !w arising from the bearing disturbances. The specific multiples shown
in the figure are those shown in [9], which also has a table relating the frequencies
of bearing disturbances to the physical properties of the bearings.
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The Campbell diagram is especially useful in showing the intersections, or
“collisions” of the frequencies of different disturbances. These intersections, marked
by the small circles in Fig. 4.7, signify resonance conditions leading to larger
disturbances. It is interesting to note that the intersections with the negative whirl
mode, with frequency !�, do not give rise to a resonant condition if the bearing
restoring forces are perfectly isotropic, as was assumed in Eq. (4.59), because
the excitation and response vectors are perfectly orthogonal in that case [9].
This is fortuitous, because these intersections, being at low frequencies, could be
problematic. They are not completely absent, of course, because the bearings are
never perfectly isotropic.

Simulation or measurement of actual reaction wheel disturbances are shown
on a waterfall chart that looks like a Campbell diagram with a third axis to plot
the disturbance level. Discussions of experimental validation of reaction wheel
disturbance models with several examples of waterfall charts can be found in [42]
and [38]. The study of reaction wheel disturbances is only one part of a general jitter
analysis [37].

The reaction wheel’s motor can contribute to axial moment disturbances. The
drive torque provided by the motor is a source of high frequency disturbances.
Torque ripple is a result of the drive torque being a superposition of rectified sine
waves. The torque ripple of a motor with a greater number of poles is at a higher
frequency, where it is less problematic. Cogging torques, a result of the magnets
in the rotor moving past a ferromagnetic stator, are present regardless of whether a
torque is applied, but are absent from reaction wheels that have no ferromagnetic
materials in the stator [9]. Migration of lubricant in the bearings can give rise to low
frequency torque noise, which can have a significant effect on spacecraft pointing.
Light oils are less likely to produce torque noise than grease, but grease is less prone
than oil to migration during storage at one g and during launch.

The effects of reaction wheel disturbances on spacecraft jitter are often mitigated
by mounting the reaction wheels on flexible isolators. These must be carefully
analyzed, however, because the interaction of the wheels’ rocking modes with the
isolator modes can lead to potentially troublesome mode collisions [11].

4.8.3 Redundant Wheel Configurations

Spacecraft are often equipped with more than the three reaction wheels, both
for redundancy and to provide greater torque and momentum storage capability.
Redundant reaction wheels are quite commonly placed in a hot backup configuration
for this purpose. The torque provided by six reaction wheels allows the NASA
Swift spacecraft to complete 50ı slew maneuvers in 75 s in order to collect data
on transient gamma ray bursts. Similar configurations also allow for longer time
intervals between momentum unloads for spacecraft, such as the James Webb Space
Telescope (JWST), that cannot unload angular momentum continuously.
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The momentum transfer maneuver has been studied in detail using multiple
wheels. This problem is related to the initial acquisition after launch since the wheel
or wheels are at rest while the spacecraft has some momentum imposed by the
launch vehicle in a given axis. Reference [28] studied the strategy to transfer this
initial momentum to the wheel(s) as well as to avoid occurrence of a singular state,
and [63] introduced a near minimum time eigenaxis rotation maneuver using a set
of three reaction wheels without momentum bias for a nadir pointing spacecraft in a
circular low-Earth orbit. The combined eigenaxis maneuvers (using reaction wheels
and thrusters) are presented in [13] to reduce the time spent on large rotations.
The reaction wheel optimization problem has been extensively analyzed in the
literature (e.g. see [22,23], and [41]). In the first two of these references the assembly
configuration has been selected to minimize the power consumption of the wheels
in their task of absorbing the secular portion of the environmental torques.

Our analysis will implicitly assume that all the reaction wheels on a spacecraft
are identical, which is usually, but not universally, the case. We arrange the applied
torque and the wheel angular momenta of the individual wheels, Lw

i and Hw
i , in

column vectors Lw
W and Hw

W , where the subscript W denotes the n-dimensional
wheel frame. The transformation from the wheel frame to the body frame is given
by the 3 � n distribution matrix Wn, whose columns are unit vectors in the body
frame, wi , along the spin axes of the wheels:

Wn D
�
w1 w2 � � � wn

�
(4.64)

The total wheel torque and angular momentum in the body frame are given by

Lw
B D Wn

�
Lw
1 L

w
2 � � � Lw

n

�T � WnLw
W (4.65a)

Hw
B D Wn

�
Hw
1 H

w
2 � � � Hw

n

�T � WnHw
W (4.65b)

Because the equations for torque and angular momentum are parallel, we will
concentrate on angular momentum in the following. Every result we find for angular
momentum has a corresponding relation for torque. It is important to note that Hw

W

and Hw
B will not have the same magnitude in general, because Wn is generally not

an orthogonal matrix.
We really want to invert Eqs. (4.65), that is to transform a desired body frame

angular momentum or torque vector into the wheel frame. This is trivial for n D 3,
we simply set Hw

W D W �1
3 Hw

B , assuming that the distribution matrix is invertible.
Invertibility requires the distribution matrix to have full rank, rank three in this case,
and is equivalent to the requirement that the spin axis unit vectors wi do not all lie in
a plane. This will be true for any reaction wheel configuration designed to provide
three-axis control.

There is no unique way to distribute the torque or angular momentum for n > 3,
and we will consider two approaches: the pseudoinverse and minimax methods.
Equation (4.65b) demands that the difference,�Hw

W , between two distinct values of
Hw
W that produce the same Hw

B must satisfy the equation Wn�Hw
W D 0. This says

that �Hw
W must lie in the null space of the matrix Wn, which is .n� 3/-dimensional

if Wn has full rank, as we assume.
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Fig. 4.8 Pyramid configuration

Let us now look at some specific configurations of redundant reaction wheels.
We will consider two popular four-wheel configurations: a pyramid configuration
and a configuration known as the NASA standard configuration that was used
on the Multimission Modular Spacecraft (MMS). Figure 4.8 shows the pyramid
configuration. This configuration assumes symmetry on each coordinate plane.
Its transformation matrix from the reaction wheel coordinate system to the body
coordinate system is given by

W4 D
2
4
a �a 0 0

b b c c

0 0 d �d

3
5 (4.66)

where a2Cb2 D c2Cd2 D 1. This matrix assumes a preferential direction along the
body e2 axis, with each wheel contributing to this direction. For a D d and b D c,
the spin axes make the same angle with the .e1; e3/ plane. This layout is the most
common configuration for Earth-pointing spacecraft in which a constant rate along
the pitch axis is required to point the instruments toward the Earth’s surface. The
preferred axis of the transformation in Eq. (4.66) or of any other distribution matrix
can be changed by multiplying Wn on the left by the appropriate rotation matrix.
The null space of W4 is one-dimensional, consisting of scalar multiples of the unit
vector

n4 D 1p
2.b2 C c2/

2
664

c

c

�b
�b

3
775 (4.67)

The NASA Standard four-wheel configuration places three orthogonal wheel
spin axes along the body axes and the fourth, skew, wheel axis with projected
components along each body axis, as shown in Fig. 4.9. The transformation matrix
for this configuration is given by

WN D
2
4
1 0 0 ˛

0 1 0 ˇ

0 0 1 �

3
5 (4.68)
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Fig. 4.9 NASA standard
configuration

where ˛2 C ˇ2 C �2 D 1. The null space of WN is along the unit vector

nN D 1p
1C ˛2 C ˇ2 C �2

2
664

˛

ˇ

�

�1

3
775 (4.69)

For the special, but very common, case given by ˛ D ˇ D � D 1=
p
3, the fourth

wheel’s spin axis is at an angle of 54:7ı with respect to the coordinate axes.
We will also consider two six-wheel configurations, both with distribution matrix

W6 D
2
4
b c b c b c

0
p
3d=2

p
3a=2 0 �p3a=2 �p3d=2

a d=2 �a=2 �d �a=2 d=2

3
5 (4.70)

where a2Cb2 D c2Cd2 D 1. The null space of W6 is three-dimensional, requiring
three linearly independent vectors to span it. The usual case, which we will refer
to as the pyramid configuration, has b D c and a D d , as on Swift and JWST,
so the spin axis directions are evenly distributed around a cone centered on the e1
axis. The other six-wheel configuration attains the maximum symmetry possible
with six wheels by choosing the parameters b D sin˛, a D cos˛, c D sinˇ, and
d D cosˇ, with tan˛ D .3Cp5/=4 and tanˇ D .3 � p5/=4, so that the wheel
spin axis vectors are normal to the faces of a regular dodecahedron.9

4.8.3.1 Pseudoinverse Distribution Law

The method chosen to distribute torque or angular momentum among redundant
wheels is specific to the mission’s requirements, but the most common method is to

9The authors thank John P. Downing for suggesting this configuration.
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use the pseudoinverse of W , denoted by W �. The pseudoinverse, or Moore-Penrose
generalized inverse, of a real matrix satisfies the conditions: W W �W D W ,
W �W W � D W �, and W W � and W �W are symmetric [21, 25].

If Wn has full rank, as we are assuming, the pseudoinverse is given by

W �
n D W T

n

�
WnW

T
n

	�1
(4.71)

In addition to all the conditions required of a pseudoinverse, this satisfies the
stronger relation

WnW
�
n D I3 (4.72)

Note, however, that W
�
n Wn ¤ In for n > 3. Equation (4.72) guarantees that

Eq. (4.65b) is satisfied if we set

Hw
W D W �

n Hw
B (4.73)

The most general wheel angular momentum vector Hw
W satisfying Eq. (4.65b) is

given by

Hw
W D W �

n Hw
B C nn D W T

n

�
WnW

T
n

	�1
Hw
B C nn (4.74)

where nn is an arbitrary vector in the null space of Wn. This gives

kHw
W k2 D kW T

n

�
WnW

T
n

	�1
Hw
Bk2 C 2.Hw

B/
T
�
WnW

T
n

	�1
Wnnn C knnk2

D .Hw
B/
T
�
WnW

T
n

	�1
Hw
B C knnk2 (4.75)

by the definition of the null space. We see that the Euclidean norm, or L2 norm,
of the wheel momentum vector is minimized by setting nn D 0, i.e. by using the
pseudoinverse to distribute the angular momenta.

Now let us consider some specific cases. The pseudoinverse of W4 for the four-
wheel pyramid is given by Eq. (4.71) as

W
�
4 D

1

2

2
664

1=a b=.b2 C c2/ 0

�1=a b=.b2 C c2/ 0

0 c=.b2 C c2/ 1=d

0 c=.b2 C c2/ �1=d

3
775 (4.76)

It is easy to see that W
�
4 satisfies Eq. (4.72) and that

W
�
4 W4 D I4 � n4nT4 (4.77)
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The pseudoinverse of WN for the NASA standard configuration is given by

W
�

N D
1

1C ˛2 C ˇ2 C �2

2
664

1C ˇ2 C �2 �˛ˇ �˛�
�˛ˇ 1C ˛2 C �2 �ˇ�
�˛� �ˇ� 1C ˛2 C ˇ2
˛ ˇ �

3
775 (4.78)

which satisfies Eq. (4.72) and

W
�

N WN D I4 � nNnTN (4.79)

The pseudoinverse of W6 for the six-wheel configurations is given by

W
�
6 D

1

3

2
66666664

b=.b2 C c2/ 0 2a=.a2 C d2/
c=.b2 C c2/ p3d=.a2 C d2/ d=.a2 C d2/
b=.b2 C c2/ p3a=.a2 C d2/ �a=.a2 C d2/
c=.b2 C c2/ 0 �2d=.a2 C d2/
b=.b2 C c2/ �p3a=.a2 C d2/ �a=.a2 C d2/
c=.b2 C c2/ �p3d=.a2 C d2/ d=.a2 C d2/

3
77777775

(4.80)

We have seen that the pseudoinverse method for distributing torque or momen-
tum among redundant reaction wheels minimizes the Euclidean norm of the torque
or momentum vector in the wheel frame. That is, it minimizes the sum of the squares
of the individual wheel torques or angular momenta. This may be optimal from an
energy standpoint, but it does not necessarily result in using the full capability of
the reaction wheel array. The pseudoinverse has the advantage of being relatively
simple to implement, and it also has a subtler advantage. If we distribute the angular
momentum according to Eq. (4.73), then the time derivative of this equation gives

Lw
W D PHw

W D W �
n
PHw
B D W �

n Lw
B (4.81)

showing that the pseudoinverse momentum and torque distribution laws are mutu-
ally consistent.

4.8.3.2 Minimax Distribution Law

The ultimate capability of an assembly of reaction wheels is attained by minimizing
the maximum effort expended by any wheel, rather than by minimizing the sum
of squares of the efforts expended by the reaction wheels. Since the L1 norm
of a vector is defined to be the magnitude of its largest component, this minimax
optimization is also referred to as the L1 method [41]. We will continue to
emphasize optimization of angular momentum, since the results obtained can easily
be adapted to optimize torque distribution.
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We will only consider reaction wheel configurations where no three of the wheel
spin axis vectors, wi , lie in a plane. This is not a restrictive assumption, as almost all
reaction wheel assemblies satisfy it. The following argument shows that minimizing
the largest magnitude of individual wheel angular momentum in an array of n
reaction wheels will result in n � 2 of the wheels all having momentum of the
same magnitude. If this were not the case, we could reduce the magnitude of the
momentum of the wheels having the largest momentum by distributing it among
the other wheels. This process could be continued until there were only two wheels
remaining with less than the maximum magnitude. The process cannot be carried
further because a general three-component excess momentum vector cannot be
distributed between only two wheels.

Let H0 denote the maximum wheel momentum magnitude. We will consider the
problem of maximizing the body momentum Hw

B for a given value of H0 because
this is equivalent to minimizingH0 for a given Hw

B . Let us first maximize the angular
momentum in the direction wi � wj . This angular momentum does not depend on
Hw
i and Hw

j , so the maximum in the direction wi �wj is obtained by assigning the
maximum magnitude H0 to all the other wheels with the signs given by

Hw
k D H0 sign.sijk/ for k ¤ i; j (4.82)

where

sijk � .wi � wj / � wk (4.83)

With this distribution, the angular momentum in the body frame is

Hw
B D Hw

i wi CHw
j wj CH0vij (4.84)

with

vij �
nX

kD1
k¤i;j

wk sign.sijk/ (4.85)

Because the angular momenta of wheels i and j can have any magnitude less than or
equal toH0, the range of angular momenta described by Eq. (4.84) covers a rhombus
with sides of length 2H0 parallel to wi and wj . The distance in the normal direction
from the origin to this rhombus is H0 dij , where

dij � kwi � wj k�1Œ.wi � wj / � vij � D kwi � wj k�1
nX

kD1
k¤i;j

jsijkj (4.86)

The rhombi for all n.n � 1/ pairs of spin axis indices form an n.n � 1/-faced
polyhedron. It is symmetrical about the origin, with its j i face opposite to its ij face,
because vij D �vj i . At the vertices of the polyhedron all the wheel momenta have
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Fig. 4.10 Momentum polyhedron for six-wheel pyramid

magnitude H0, and n� 1 of the momenta have this magnitude along the edges. The
polyhedron forH0 equal to the maximum storage capacity of a single wheel bounds
the angular momentum storage capacity of the wheel configuration. Figure 4.10
shows the polyhedron for a six-wheel pyramid configuration with the parameters
b D c Dp1=3, a D d Dp2=3, and axes labeled in units of H0.10

We now want to invert Eq. (4.84) in order to transform the body frame angular
momentum into the wheel frame. Writing this as a matrix equation,

Hw
B D

�
wi wj vij

�
2
4
Hw
i

Hw
j

H0

3
5 (4.87)

10The momentum polyhedron of the dodecahedron reaction wheel configuration takes the form of
a rhombic tricontahedron, the shape of a 30-sided die.
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and inverting gives

2
4
Hw
i

Hw
j

H0

3
5 D 1

.wi � wj / � vij

2
4
.wj � vij /T

.vij � wi /
T

.wi � wj /
T

3
5Hw

B (4.88)

The first two rows of this equation giveHw
i andHw

j , and the third row and Eq. (4.82)
give

Hw
k D .wij �Hw

B/ sign.sijk/ for k ¤ i; j (4.89)

where

wij � Œ.wi � wj / � vij ��1.wi � wj / (4.90)

Comparing with Eq. (4.86) shows that

kwij k D d�1
ij (4.91)

Equations (4.88) and (4.89) can be rearranged into the matrix form

Hw
W D W ij

n Hw
B (4.92)

where the elements of the matrix W
ij
n are specified by Eqs. (4.88) and (4.89). This

matrix was explicitly constructed to satisfy Eq. (4.65b), so it follows that

WnW
ij
n D I3 (4.93)

which is the same as Eq. (4.72) for the pseudoinverse. Thus W
ij
n satisfies all the

requirements for being a pseudoinverse except that W
ij
n Wn is not symmetric in

general. It appears that we have n.n � 1/ matrices for computing the minimax
momentum distribution, and we need a criterion to choose among them. Before
proceeding, however, we note from the symmetry of the equations under interchange
of the indices i and j that W

ij
n D W

j i
n , so we actually have only n.n � 1/=2

independent minimax distribution matrices.
We will show the minimax distribution matrices for the four-wheel pyramid as

an illustration. With � � sign.bc/, these matrices are found to be

W 12
4 D

1

2

2
664

1=a 1=b 0

�1=a 1=b 0

0 0 1=d

0 0 �1=d

3
775 ; W 34

4 D
1

2

2
664

1=a 0 0

�1=a 0 0

0 1=c 1=d

0 1=c �1=d

3
775

W 13
4 D

1

2.b C �c/

2
664

.b C 2�c/=a 1 �c=d
�b=a 1 �c=d
��b=a � .2b C �c/=d
��b=a � ��c=d

3
775
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W 14
4 D

1

2.b C �c/

2
664

.b C 2�c/=a 1 c=d

�b=a 1 c=d

��b=a � �c=d

��b=a � �.2b C �c/=d

3
775

W 23
4 D

1

2.b C �c/

2
664

b=a 1 �c=d
�.b C 2�c/=a 1 �c=d

�b=a � .2b C �c/=d
�b=a � ��c=d

3
775

W 24
4 D

1

2.b C �c/

2
664

b=a 1 c=d

�.b C 2�c/=a 1 c=d

�b=a � �c=d

�b=a � �.2b C �c/=d

3
775 (4.94)

Finding the correct matrix to compute the minimax distribution requires identify-
ing the face of the polyhedron that the body momentum vector falls on. Figure 4.11
is an edge-on view of two adjoining faces, fij and fjk , which means that wj is
normal to the plane of the paper. The center of the polyhedron, the origin of body
momentum space, is labeled O, and the normal distances from the origin to the faces
are specified. The projection of the body momentum vector Hw

B into the plane of the
paper is also shown. We assume that the momentum is on face fij , as indicated by
the tip of the arrow. Equations (4.90) and (4.91) tell us that wij D d�1

ij eij , where eij
is the unit vector normal to fij , so we see from the figure that

wij �Hw
B

wjk �Hw
B

D d�1
ij eij �Hw

B

d�1
jk ejk �Hw

B

> 1 (4.95)

The inequality holds because eij �Hw
B D H0dij and ejk �Hw

B , the distance from the
origin to the dashed line in the figure, is less than H0djk , the distance to fjk . Thus
the angular momentum will be on face fij if wij � Hw

B > wjk � Hw
B . Generalizing

this to the entire polyhedron establishes that the correct face is the one producing
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the maximum value of wij �Hw
B .11 Note that fij is not the face whose normal vector

is closest to Hw
B in general, because the distances dij to the different faces are not

equal. The equality of W
ij
n and W

j i
n means the we only have to identify the correct

pair of parallel faces, and the relation wij D �wj i says that this requires evaluating
n.n � 1/=2 dot products and finding the maximum value of jwij �Hw

B j.
It is often better to maximize the torque provided by a reaction wheel array,

rather than its angular momentum storage capacity. The Swift spacecraft provides an
excellent example. Being in near-Earth orbit, it can unload momentum continuously,
so the stored momentum is always small; and high torques are required to slew
rapidly in order to image transient gamma-ray bursts. Thus we command the wheel
torque vector Lw

W D W
jk
n Lw

B , where fjk is the face that maximizes jwjk � Lw
B j.

This torque will not necessarily maintain a minimax distribution of reaction wheel
momenta, because the face on which jwjk � Lw

B j is maximized is generally not the
same as the face on which jwij � Hw

B j is maximized. This can be dealt with by
setting up a slower control loop to asymptotically drive the wheels to their minimax
momentum distribution. The controller can use wheel tachometer data to compute
Hw
W and Eq. (4.65b) to compute the body angular momentum. Maximizing jwij �Hw

B j
identifies the face providing the minimax momentum distribution and thus provides
the desired wheel momentum W

ij
n Hw

B D W
ij
n WnHw

W . Then the torque command is

Lw
W D W jk

n Lw
B C �.W ij

n WnHw
W �Hw

W / D W jk
n Lw

B C �.W ij
n Wn � In/Hw

W (4.96)

where Lw
B is the desired torque in the body frame and � is a feedback gain.

Equation (4.93) shows that the feedback term is in the null space of Wn, so it does
not affect the resultant torque in the body frame.

Another observation about minimax distribution of momentum is that unaccept-
able jitter can result if n � 2 wheel speeds coincide with the frequency of a flexible
mode of the spacecraft structure. It is also desirable to avoid sustained operation of
reaction wheels near zero speed. These problems can be avoided without perturbing
the spacecraft pointing by using torque or momentum in the .n � 3/-dimensional
null space of Wn to separate equal wheel speeds or to drive a wheel’s speed
rapidly through zero or past a resonant frequency [41]. Minimizing jitter is most
important during stable pointing of the spacecraft, especially for a precision pointing
mission like JWST with its milli-arcsecond level stability requirements. Avoiding
wheel speeds near zero or a resonant frequency is less important and sometimes
unavoidable while executing slews, as will be seen in the examples in the next
section.

11This relation, which is crucial for real-time implementation of the minimax algorithm, was
discovered by Frank X. Liu.
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Table 4.2 Multiple wheel capability as a multiple of the capacity of a
single wheel for pseudoinverse and minimax distribution

Configuration Wheel Failure Pseudoinverse Minimax

NASA Standard None 1.155 1.414
Any Orthogonal 0.577 0.577
Skew 1.000 1.000

Four-Wheel Pyramid None 1.333 1.633
Any One 0.816 0.816

Six-Wheel Pyramid None 2.000 2.667
Any One 1.309 1.667

Dodecahedron None 2.000 2.753
Any One 1.581 1.902

4.8.3.3 Comparison of Pseudoinverse and Minimax Distribution Laws

We will now examine the maximum momentum storage capacity in the least
favorable direction of several wheel configurations, using the minimax or pseudoin-
verse method to distribute the angular momentum. Recall that the same relations
will hold for the torque capability of the array. We denote the momentum storage
capacity of a single wheel by Hmax. The momentum storage capacity is determined
by considering the maximum momentum that can be assigned to any wheel for a
given magnitude of body momentum. This occurs for the pseudoinverse method
when Hw

B is parallel to the row of the pseudoinverse matrix corresponding to that
wheel, and the magnitude of the momentum assigned to the wheel will be the
product of the magnitude of the body momentum and the Euclidean norm of that
row vector. Thus the momentum capacity in the least favorable direction is Hmax

divided by the maximum of the norms of the rows of the pseudoinverse matrix.
Analysis of the minimax method indicates that the maximum storage on face fij is
at least as large as dij .12 Thus the minimax storage capacity in the least favorable
direction is Hmax times the minimum of dij over all the faces.

Table 4.2 shows the capabilities of four wheel configurations: the NASA
Standard configuration with ˛ D ˇ D � D 1=

p
3, the four-wheel and six-wheel

pyramids with b D c D p
1=3 and a D d D p

2=3, and the six-wheel
dodecahedron. Reference [41] proves that these parameters for the pyramid con-
figurations make their storage capability as isotropic as possible.13 It must be
emphasized that these choices will rarely be optimal for any specific mission,
since moments of inertia, slewing requirements, and environmental torques are
almost never isotropic. However, they provide a baseline for comparing the different

12This is true for all the configurations considered here, but may not hold for some pathological
configurations [41].
13The four-wheel and six-wheel pyramids with these parameters, and also the dodecahedron,
have WnW T

n D .n=3/I3. Then Eq. (4.75) shows that the pseudoinverse distribution method gives
kHw

W k2 D .3=n/kHw
Bk2 for these configurations.
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configurations and distribution methods. We also present the storage capacities of
the four configurations with one wheel failure.

The minimax method provides more momentum storage or torque capability than
the pseudoinverse method for almost all cases in Table 4.2. The only exceptions
are the four-wheel configurations with a failed wheel, which are three-wheel con-
figurations for which W3 has a unique inverse. The NASA Standard configuration
provides less capability than the four-wheel pyramid with all wheels active, and
is quite a bit less capable in the single-point failure case if one of its orthogonal
wheels fails. It is better only in the statistically less likely case that the failed wheel
is the skew wheel. The dodecahedron provides little advantage over the six-wheel
pyramid configuration if all six wheels are functioning, but it performs better in the
single-point failure case.

We also compare simulations of a rest-to-rest 90ı slew using the minimax and
pseudoinverse methods to distribute angular momentum among six wheels in the
same pyramid configuration as was used for the capacity comparisons. This example
is motivated by JWST, but differs in several details. The slew is about the body e1
axis, the cone axis of the wheel configuration, and starts with system momentum of
2Hmax in the body Ce2 direction. We ignore the very small changes in the system
momentum during the slew arising from external torques. The slew begins with a
constant angular acceleration of 1:6 � 10�4 deg/s2 or 90 deg=.750 s/2 for a time
taccel � 750 s. This is followed by a coast at a constant angular rate between taccel

and .750 s/2=taccel. The slew ends with a deceleration at �1:6 � 10�4 deg=s2 for
a time taccel. There is no coast period if taccel D 750 s, so this limit represents an
acceleration-limited slew in the minimum time of 25 min. The system momentum
in the spacecraft body frame is

HB D J!CHw
B D A.e1; �/

2
4

0

2Hmax

0

3
5 (4.97)

which gives, assuming a diagonal inertia tensor,

Hw
B D

2
4
�J1 P�

2Hmax cos �
2Hmax sin �

3
5 (4.98)

The simulation uses J1 D Hmax � 750 s, consistent with values of 60 Nms for
Hmax and 45,000 kg-m2 for J1, the approximate values for JWST. It follows
from Eq. (4.98) that kHw

Bk2 D 4H2
max C .J1 P�/2. With the parameters used in the

simulations, this has the maximum value

kHw
Bkmax D 2Hmax

p
1C .taccel=3;000 s/2 (4.99)

Figure 4.12 shows the wheel momenta that result from using the pseudoinverse
algorithm to distribute the momentum of Eq. (4.98) among the six wheels, identified
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Fig. 4.12 Wheel momenta for 36-min slew using pseudoinverse distribution
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Fig. 4.13 Wheel momenta for 36-min slew using minimax distribution

by the labels on the curves. The acceleration time is taccel D 303 s, which gives a
slew time of 36 min. The magnitude of the angular momentum of wheel 5 reaches
99:97% of Hmax, so this 90ı slew cannot be performed in less than 36 min using
the pseudoinverse momentum distribution method. By Eq. (4.99), the maximum
angular momentum in the body frame during this slew is 2:098Hmax, greater than the
maximum value of 2Hmax allowed by Table 4.2. That is not a contradiction, because
the angular momentum in this simulation is not in the least favorable direction.

The minimax momentum distribution method can be used to either reduce the
maximum wheel angular momentum for a given slew time or to slew more rapidly.
Figure 4.13 shows the first option, keeping taccel D 303 s and reducing the maximum
wheel angular momentum magnitude to less than 75 % ofHmax, a reduction of 25 %
compared to the pseudoinverse method. The plots show that there are always four
wheels with the same angular momentum magnitude, and also that the minimax
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Fig. 4.14 Wheel momenta for 25-min slew using minimax distribution

method leads to discontinuous wheel torque commands when the momentum moves
between faces of the polyhedron. The greater slope of the momentum vs. time
curves shows that the minimax momentum distribution method demands higher
wheel torques than the pseudoinverse method. The maximum wheel torque in
Fig. 4.12 is L1 D Hmax=.776 s/, while the maximum wheel torque in Fig. 4.13
is L1 D Hmax=.353 s/, more than twice as great.

Figure 4.14 shows a minimum-time, acceleration-limited (taccel D 750 s) slew
using minimax momentum distribution. The 25 min slew time is 30 % less than
the time required by the pseudoinverse method, and the maximum wheel angular
momentum magnitude is limited to 93.16 % of Hmax. The maximum body angular
momentum during this slew is 2:543Hmax, which is less than the 2:667Hmax allowed
by Table 4.2. This slew would probably require high-torque wheels to provide the
maximum wheel torque of L1 D Hmax=.179 s/, however.

4.9 Control Moment Gyros

This section expands on the brief discussion of CMGs for attitude control in
Sect. 3.3.5.1. Although double-gimbal control moment gyros have been developed,
their mechanical complexity has led to their being supplanted by single-gimbal
control moment gyros (SGCMGs) in most applications. A SGCMG has a wheel
spinning at constant speed about a spin axis wj with an angular momentum
of magnitude Hw

j .14 Rotating the angular momentum about a gimbal axis gj
perpendicular to the spin axis requires a torque

14Variable-speed CMGs, combining the properties of CMGs and reaction wheels, have been
proposed but are not widely employed.
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Lw
j D

d.Hw
j wj /

dt
D Hw

j Pwj D Hw
j
P�j gj � wj (4.100)

where �j is the gimbal angle in radians. The reaction torque exerted on the
spacecraft is the negative of this. CMGs are capable of providing higher torques
than reaction wheels because it is easier to apply a torque to a slowly-moving
gimbal than to a rapidly-rotating wheel. CMGs are also advantageous from energy
considerations, because the rotational kinetic energy stored in a CMG rotor moving
at constant speed does not change, whereas energy must be added to or subtracted
from a reaction wheel to change its speed. The angular momentum of CMGs covers
a wide range from less than 1 Nms to greater than 2,000 Nms. Maximum gimbal
rates are typically in the range from 0.2 to 2 rad/s, which gives an idea of the
available torques.

It is clear that at least three SGCMGs are needed to provide three-axis control,
and a system of n SGCMGs gives

Lw D
nX

jD1
Hw
j
P�j gj � wj D W CMG

n
P� (4.101)

where

W CMG
n � �Hw

1 g1 � w1 H
w
2 g2 � w2 � � � Hw

n gn � wn

�
(4.102)

and

P� � � P�1 P�2 � � � P�n
�T

(4.103)

The methods developed for reaction wheels in Sect. 4.8.3 can be used to invert these
equations in order to find P� in terms of Lw, but there are additional complications
for SGCMGs. The directions of the gimbal axes are fixed, but the directions of the
spin axes vary as the gimbal angles change, so the matrix W CMG

n is not constant.
A greater problem is that a system of SGCMGs can reach a singular configuration
in which all the available torques lie in a plane, resulting in a loss of control
authority about the axis perpendicular to the plane. These singular configurations,
and methods for avoiding them, have been studied extensively [30, 40, 67]. In a
system with only three SGCMGs, the commanded gimbal rates are determined
uniquely by the inverse of W CMG

n , so there are no extra degrees of freedom
for steering around singular configurations. For this reason, systems of SGCMGs
invariably employ four or more CMGs.
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4.10 Magnetic Torquers

Magnetic torquers create a magnetic dipole moment, m, which in turn creates a
torque given by Eq. (3.159). Magnetic torques can be used either directly for attitude
control or to unload momentum accumulated by reaction wheels or CMGs. The
simplest torquers are made of N turns of wire in a loop of area A; sending a current
I through such a coil produces a magnetic dipole moment of magnitude m D NIA
in a direction perpendicular to the plane of the coil. This relation has the advantage
of being a perfectly linear function of the current, but large areas or many turns
are required to produce the dipole moments needed by many spacecraft. For this
reason torque rods, which are coils of wire wrapped around ferromagnetic cores,
are employed to obtain greater dipole moments for a given amount of current.

Ferromagnetic materials exhibit hysteresis, as shown in Fig. 4.15. The dipole
moment has a maximum value known as the saturation value, msat, when all
the magnetic dipoles in the ferromagnetic material line up in the same direction.
There is also a residual dipole, mres, when no current is applied. The sign of the
residual dipole depends on the direction from which the zero-current condition is
approached, as the hysteresis curve is traversed in a counterclockwise direction. For
most commercially available torque rods, the residual dipole moment is less than
1 % of the saturation moment, and the dipole moment is an approximately linear
function of the current for dipole moments of at least 80 % of the saturation value,
as indicated in the figure. Torque rods are available with saturation moments ranging
from about 1 to 1;000Am2 and scale factors ranging from less than 0:1Am2=mA
to almost 3Am2=mA, with the larger scale factors corresponding to the larger
moments. Note that attaining a scale factor of 1Am2=mA without a ferromagnetic
core would require a number of turns and coil area satisfying NA D 1;000m2.

Most applications of magnetic torquers use three torquers producing moments
on orthogonal axes. It is generally not necessary to employ extra torque rods
for redundancy, because they usually have dual windings to provide internal
redundancy. Sometimes more than three torque rods are used to provide additional
capability, giving a total magnetic dipole moment equal to the vector sum of the
moments provided by the individual rods. In this case, the desired net magnetic

m
msat

mres
I

Fig. 4.15 Typical hysteresis
loop; magnetic dipole
moment as a function of
applied current
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moment can be distributed among the torquers by using one of the algorithms
developed in Sect. 4.8.3 to distribute torque or angular momentum among reaction
wheels.

4.11 Thrusters

Thrusters generate both forces and torques, so they can be used for both trajectory
control and attitude control, as was briefly discussed in Sect. 3.3.6.5. Reference [33]
provides an excellent overview of spacecraft propulsion systems. Thrusters have the
advantage of not being dependent on an ambient magnetic or gravitational field,
so they can be used for control or momentum unloading in any orbit. They have
the disadvantage of requiring an expendable propellant, so that the life of a thruster-
dependent mission is limited by the propellant supply. The force and torque provided
by a thruster are

Fmexp D � Pmvrel (4.104a)

Lmexp D r � Fmexp (4.104b)

where Pm is the rate at which mass is expelled, vrel is the velocity of the expelled
mass relative to the spacecraft, and r is the vector from the spacecraft center of
mass to the thruster. These equations show that the thrust and torque for a given
mass expenditure are linearly proportional to the velocity vrel. Writing Eq. (4.104a)
as vrel D �p=�m shows that this parameter has the units of impulse per unit mass of
propellant, so it is referred to as the specific impulse and can be expressed in units
of Ns/kg. It is more common to normalize the specific impulse by the acceleration
of gravity at the surface of the Earth, g0 D 9:80665 m/s2, to express it in time units:

Isp � vrel=g0 (4.105)

Three types of thrusters are in common use for attitude control. Cold gas thrusters
use a non-reacting gas stored at high pressure, on the order of 30 MPa. The most
common gases are nitrogen, with a specific impulse of about 70 s, and helium, with
a specific impulse of about 175 s. Using helium saves mass, but it is more expensive
and more prone to leakage because of the small size of the helium molecule. Helium
also requires a propellant tank with seven times as much volume or seven times
higher pressure than the equivalent amount of nitrogen. Other propellants are used,
but more rarely, in cold gas systems.

Monopropellant thrusters use a propellant that is decomposed catalytically.
Hydrazine, with Isp D 242 s, is by far the most common monopropellant.
Monopropellant systems do not require the high pressures needed for cold gas, but
hydrazine is a highly toxic material. This has led to interest in less toxic “green”
propellants, such as hydroxyl ammonium nitrate (HAN), with Isp D 266 s, and
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ammonium dinitramide (ADN), with Isp D 253 s. These new propellants are less
harmful to the environment, diminish operational hazards, and actually increase fuel
efficiency due to their higher specific impulse [68].

The third class of thrusters uses electric fields to accelerate the expelled mass
to a high velocity. The specific impulse of electric thrusters ranges from 500 to
3;000 s, so the saving in propellant mass is apparent. The kinetic energy that must
be provided to the expelled mass is mv2rel=2, so the power required by the thruster,
assuming 100 % efficiency, is

Pthruster D 1

2
Pmv2rel D

1

2
Fmexpvrel (4.106)

This energy is stored in the pressure vessel for cold gas thrusters and is provided
by chemical decomposition for monopropellant thrusters, but it must be provided
by the spacecraft power system for electric propulsion. Thus we see that an electric
propulsion system with a higher specific impulse requires less propellant but more
power to generate a given level of thrust.

An attitude torque provided by thrusters will perturb the spacecraft’s orbit unless
it is provided by a pair of equal and opposite forces comprising a perfect couple

Lcouple D r1 � Fmexp C r2 � .�Fmexp/ D .r1 � r2/ � Fmexp (4.107)

Couples also have the advantage of being insensitive to a shift in the spacecraft’s
center of mass, which would give r1 ! r1 ��r and r2 ! r2 ��r, and thus would
leave Lcouple unchanged. Several factors make it impractical to provide perfect
couples, though. It is often desirable to have all the thrusters on one face of a
spacecraft to facilitate modular integration of the propulsion system, to minimize
the amount of propellant plumbing required, or to protect sensitive instruments from
the deleterious effects of thruster plume impingement. The difficulty of providing
perfect couples makes it important to minimize the migration of the spacecraft’s
center of mass, either by locating a single propellant tank at the center of mass or
by distributing tanks symmetrically around the center of mass and drawing equal
masses of propellant from them.

4.12 Nutation Dampers

Nutation dampers are passive devices designed to dissipate energy, thereby produc-
ing steady rotation of a spinning spacecraft about its axis of maximum principal
moment of inertia, as described in Sect. 3.3.3.2. Libration dampers are similar
energy-dissipation mechanisms used to eliminate libration on spacecraft employing
gravity gradient stabilization, as discussed in Sect. 3.3.8. The energy-dissipating
medium in either case can be a viscous fluid, a flexible spring with high structural
damping, or electrical eddy currents [66].
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Fig. 4.16 ST5 passive nutation damper. Source: NASA

A very common type of nutation damper is the viscous ring nutation damper,
a tube bent into the shape of a ring and filled with a viscous fluid [7, 27]. If the
fluid does not fill the ring completely, surface tension at the interfaces of the fluid
and gas (or vacuum) can cause the fluid to be locked in place, with a resultant
loss of damping action. For this reason, viscous ring dampers are commonly
fully filled and equipped with bellows to accommodate thermal expansion and
contraction of the fluid. Some dampers, however, have omitted bellows because of
space limitations, tolerating vacuum bubbles at non-operational low temperatures
and using tubing strong enough to handle high pressures at the upper end of the
operational temperature range. The viscous ring nutation damper of NASA’s Space
Technology-5 (ST5) mission, illustrated in Fig. 4.16 provides a good example [47].

We will use the methods of Sect. 3.3.5.1 to simulate the effect of a single
fully-filled viscous ring nutation damper on a triaxial spacecraft with principal
moments J1 < J2 < J3. The damper is modeled as a reaction wheel with its
axis perpendicular to the plane of the ring, along the axis of intermediate inertia,
the orientation providing the most effective damping. We will neglect external
torques, so the system angular momentum will have a constant magnitude H .
Letting HB D Hu, where u is a unit vector, Eq. (3.80) can be written

Pu D �!BIB � u D �.H=J3/ŒD.u � �e2/� � u (4.108)
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where

D � J3J�1
B D diag.Œ J3=J1 J3=J2 1�/ � diag.Œ�1 �2 1�/ (4.109)

and

� � Hw=H (4.110)

with Hw being the angular momentum of the fluid in the damper. These equations
must be integrated numerically, but the unit vector nature of u can be used to

eliminate one degree of freedom. With u1 D
q
1 � u22 cos � and u3 D

q
1 � u22 sin �,

the differential equation for u2 is

Pu2 D .H=J3/.1=2/.�1 � 1/.1 � u22/ sin 2� (4.111)

and the differential equations for u1 and u3 are equivalent to

P� D .H=J3/f.1=2/Œ2�2 � �1 � 1 � .�1 � 1/ cos 2� �u2 � �2�g (4.112)

We assume that the torque acting on the damper fluid is linearly proportional to
and in the opposite direction from the fluid’s angular velocity !w:

Lw D �˛.J k=J3/H!w D �˛ˇH!w (4.113)

where ˛ is a dimensionless damping coefficient, J k is the MOI of the moving fluid,
and ˇ is defined by the last equality. The actual value of the damping coefficient
depends on the diameter of the tubing and the density and viscosity of the fluid,
incorporated in a “wobble Reynolds number,” but we will treat it simply as a tunable
parameter [7, 27]. Then Eqs. (3.145) and (3.141) give the equation of motion of the
dimensionless damper angular momentum:

P� D Lw=H D �˛ˇ!w D �˛ˇŒ.Hw=J k/ � e2 �!BIB �
D �˛ˇŒ.�H=J k/ � .u2 � �/H=J2� D ˛.H=J3/Œˇ�2u2 � .1C ˇ�2/�� (4.114)

The MATLAB integrator ode45 was used to integrate Eqs. (4.111), (4.112),
and (4.114) for a spacecraft with the inertia ratios of Fig. 3.2b, which give �1 D 2

and �2 D 3=2. The damper MOI was assumed to give ˇ D 0:005, which about an
order of magnitude larger than a reasonable damper could provide, but was chosen
to give readable plots. The damping coefficient was assigned the value ˛ D 1=

p
2,

which we will show to be the optimal value. The initial values of � D �0:01
rad and u2 D � D 0 represent very nearly pure spin about e1, the spacecraft
axis of minimum MOI. The results of the simulation, displayed in Fig. 4.17,
illustrate quantitatively in non-dimensional units the qualitative behavior discussed
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Fig. 4.17 Simulation of spinning spacecraft with nutation damper. (a) Intermediate axis angular
momentum. (b) Path on momentum sphere. (c) Damping fluid spin rate. (d) Rotational kinetic
energy

in Sect. 3.3.3. Figure 4.17a shows the component of the angular momentum along
the axis of intermediate inertia; it begins at zero, then acquires an oscillatory
behavior that grows to an amplitude close to the total system angular momentum,
and finally decays to zero. The rotational kinetic energy in dimensionless form,

2J3Ek=H
2 D .1 � u22/.�1 cos2 � C sin2 �/C �2.u2 � �/2 C �2=ˇ (4.115)

is plotted in Fig. 4.17d. It starts at the value �1 D 2, the value for pure rotation
around the axis of minimum inertia, and ends at 1, the value for pure rotation around
the axis of maximum inertia. It crosses the value �2 D 3=2, the value for pure
rotation around the axis of intermediate inertia, at time t� D 1184J3=H , when the
intermediate axis momentum reaches its maximum amplitude. Figure 4.17b shows
the path followed by the angular momentum on the angular momentum sphere;
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it spirals out from e1, crosses the terminator at time t�, and then spirals in toward e3.
Slightly different initial conditions or a slightly different damping factor could very
easily have caused the path on the momentum sphere to cross the other terminator,
resulting in a final spin about �e3 instead of e3. The path is only plotted for times
between 700J3=H and 1600J3=H , which is for 1:03 < 2J3Ek=H2 < 1:98, because
the paths become even denser than those shown at earlier and later times. Finally,
Fig. 4.17c shows the spin rate of the damping fluid in dimensionless form,

J3!
w=H D �=ˇ � �2.u2 � �/ (4.116)

which attains its peak amplitude near t�. The rate of energy dissipation is propor-
tional to .!w/2, but it slows slightly at time t� because energy dissipation vanishes
instantaneously for steady rotation about the damper axis.

We will now motivate our choice of the damping parameter ˛ by analyzing
motion near the minimum or maximum principal axis. We set � D �0 C �0, where
�0 D 0 or  for nutation about the axis of minimum inertia, and �0 D ˙=2
for nutation about the axis of maximum inertia. We linearize Eqs. (4.111), (4.112),
and (4.114) for small �0, u2, and �, noting that sin 2�0 D 0. We also define
c � cos 2�0 so that c D 1 for �0 D 0 or  , and c D �1 for �0 D ˙=2. The
linearized equations in matrix form are

d

dt

2
4
�0
u2
�

3
5 D H

J3

2
4

0 �c� ��2
c.�1 � 1/ 0 0

0 ˛ˇ�2 �˛.1C ˇ�2/

3
5
2
4
�0
u2
�

3
5 (4.117)

where

� D
(
�1 � �2 for c D 1
�2 � 1 for c D �1 (4.118)

The general solution of these coupled linear differential equations is a superposition
of three components of the form

2
4
�0.t/
u2.t/
�.t/

3
5 D

2
4
�0.0/
u2.0/
�.0/

3
5 e	t (4.119)

with coefficients satisfying initial conditions. A nontrivial solution exists only if 	
is one of the three roots of the eigenvalue equation

0 D det

8<
:	I3 �

H

J3

2
4

0 �c� ��2
c.�1 � 1/ 0 0

0 ˛ˇ�2 �˛.1C ˇ�2/

3
5
9=
;

D .	2 C Q!2p/Œ	CH˛.1C ˇ�2/=J3�C c˛ˇ.H=J3/3�22 .�1 � 1/ (4.120)
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where

Q!p D H

J3

p
�.�1 � 1/ D

(
.H=J3/

p
.J3 � J1/.J3 � J2/=J1J2 for c D 1

.H=J1/
p
.J2 � J1/.J3 � J1/=J2J3 for c D �1

(4.121)

The cubic eigenvalue equation does not have nice analytic solutions, but its
solutions are close to those obtained by ignoring the last term on the right side
because ˇ is very small. Those approximate solutions are

	0 D �H˛.1C ˇ�2/=J3 and 	˙ D ˙i Q!p (4.122)

The real eigenvalue 	0 has the eigenvector Œ0 0 1�T in the ˇ D 0 limit. It describes
only uninteresting transient behavior, the rapid decay of an initial value of Hw.

The purely imaginary eigenvalues are more interesting, describing sinusoidal
motion with frequency Q!p . In the limit of small nutation about the e3 axis, i.e. for
c D �1 and 2Ek D H2=J3, this frequency agrees up to a sign with the nutation
frequency given by Eq. (3.120). The expression for c D 1, i.e. for nutation about the
e1 axis, has the same form with J1 and J3 interchanged, as would be expected. Now
we need to consider the effect of the term in Eq. (4.120) that we have ignored up to
this point. This will cause a small change in 	˙, so we substitute 	˙ D ˙i Q!pC 
˙
into Eq. (4.120), giving

0 D .˙2i Q!p
˙
C 
2

˙
/Œ˙i Q!p C 
˙

CH˛.1C ˇ�2/=J3�C c˛ˇ.H=J3/3�22 .�1 � 1/
� ˙2i Q!p
˙

.˙i Q!p CH˛=J3/C c˛ˇ.H=J3/3�22 .�1 � 1/ (4.123)

The approximation ignores all terms of higher than first order in 
˙ and ˇ. Solving
for 
˙ gives


˙ D c˛ˇ.H=J3/
3�22 .�1 � 1/

2 Q!p. Q!p 	 iH˛=J3/ D
c˛ˇ.H=J3/

3�22 .�1 � 1/. Q!p ˙ iH˛=J3/
2 Q!pŒ Q!2p C .H˛=J3/2�

(4.124)

and thus

	˙ D ˙i Q!p


1C c˛2ˇ�22

2�Œ.J3 Q!p=H/2 C ˛2�
�
C cH

2J3

˛ˇ�22 .�1 � 1/
.J3 Q!p=H/2 C ˛2 (4.125)

The quantity in the curly brackets gives a small correction to the nutation frequency,
less than 1 % for the parameters of our simulation. The second term is much more
important; it gives an exponentially growing nutation amplitude for c D 1 and
an exponentially decaying amplitude for c D �1, exactly what we expect for
motion near the axis of minimum or maximum principal MOI, respectively. The
time constant of the growth or decay is
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� D 2J3

H

.J3 Q!p=H/2 C ˛2
˛ˇ�22 .�1 � 1/

D 2�

ˇ�22 Q!p
˛2 C �.�1 � 1/
˛
p
�.�1 � 1/

(4.126)

It is easy to see that the time constant is minimized for ˛ Dp�.�1 � 1/. For �1 D 2
and �2 D 3=2, ˛ D 1=p2 provides the minimum time constant near both e1 and e3,
which is why this value was chosen for the simulation. As a check, simulations with
˛ D 0:6 and ˛ D 0:8 both gave slower damping. Choosing the optimal damping
coefficient gives

�min D 4�

ˇ�22 Q!p
(4.127)

which is on the order of 1=ˇ times the nutation period. A more realistic value of ˇ
than was used in the simulations would result in damping times about ten times as
great.

Problems

4.1. Use the properties of the Poisson distribution to verify the probabilities for
star availability presented in Sect. 4.2.4, i.e. NN D 6:75 gives a 90 % probability of
having four or more stars in the FOV, NN D 8 gives a 90 % probability of having five
or more stars in the FOV, NN D 10 gives a 99 % probability of having four or more
stars in the FOV, and NN D 11:7 gives a 99 % probability of having five or more stars
in the FOV.

4.2. The discrete-time gyro simulation model in Eq. (4.54) can also be derived from
Farrenkopf’s model given in Eq. (6.116), which is summarized by

� true
kC1 D � true

k ��t ˇtrue
k C�t !k C w1k

ˇtrue
kC1 D ˇtrue

k C w2k

where E
˚
wkwT

k

� D Q, with wk D Œw1k w2k �
T and

Q D
2
4
�2v�t C 1

3
�2u�t

3 � 1
2
�2u�t

2

� 1
2
�2u�t

2 �2u�t

3
5

To simulate the correlated process noise process a Cholesky decomposition ofQ can
be used, with LTL D Q. First, prove that this can be done. Consider a zero-mean
Gaussian white-noise variable wk with covariance Q. Show that wk D LT pk can
be used to simulate the correlated process noise, where pk is zero-mean Gaussian
white-noise process with covariance given by the identity matrix.
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Assume the following form for L:

L D
�
˛ �

ˇ 0

�

Determine ˛, ˇ and � from Q in terms of �u, �v and �t . Next, using .� true
kC1 �

� true
k /=�t D ! true

k prove that the scalar version of Eq. (4.54) can be derived from
Farrenkopf’s model.

4.3. Show that the discrete-time gyro simulation model in Eq. (4.54) can effectively
be executed using the following model for each axis:

!kC1 D ! true
kC1 C yk C

�
�2v
�t
C 1

12
�2u �t

�1=2
Nvk

ˇtrue
kC1 D ˇtrue

k C �u�t
1=2Nuk

yk D ˇtrue
k C

1

2
�u�t

1=2Nuk

Note that the last two equations give the following discrete-time system matrices as
defined in Eq. (12.49): ˚ D 1, � D 1, H D 1, and D D 1=2 with input given
by �u�t

1=2Nuk . Therefore, yk is first obtained using the aforementioned discrete-
time state model and then substituted into the !kC1 equation to provide simulated
discrete-time gyro measurements.

4.4. Find, as a function of � and !0, the wheel speed at which the upper whirl
frequency !C of Eq. (4.63) coincides with the first harmonic of the wheel speed
! D 2!w. Find the numerical value of this in rpm for � D 0:91 and !0 D 60 Hz.
Discuss.

4.5. This problem has two parts:

a) Derive the wheel capabilities in Table 4.2.
b) Derive the wheel capabilities in the two-failure cases for the six-wheel config-

urations in Table 4.2. There are three different possibilities for the six-wheel
pyramid: failure of adjacent wheels (e.g. 1&2), failure of opposite wheels
(e.g. 1&4), and the intermediate case (e.g. 1&3). In contrast to this, all two-wheel
failures in the dodecahedron configuration are equivalent.

4.6. Repeat the analysis leading to Figs. 4.12, 4.13, and 4.14 using the four-wheel
configuration W4 of Eq. (4.66) with b D c D p1=3 and a D d D p2=3. As in the
example in the text, assume a rest-to-rest 90ı slew about the body e1 axis, beginning
with a constant angular acceleration of 1:6 � 10�4 deg/s2 for a time taccel � 750 s,
followed by a coast at a constant angular rate between taccel and .750 s/2=taccel,
and ending with a deceleration at �1:6 � 10�4 deg/s2 for a time taccel. Use J1 D
Hmax�750 s, but assume that the system momentum for the four-wheel case is only
Hmax in the bodyCe2 direction rather than 2Hmax, as in the six-wheel case.
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Find the minimum slew time for the pseudoinverse distribution law. Find the
maximum value of any reaction wheel momentum for the minimax distribution law
if the slew is performed in this time. Find the minimum slew time for the minimax
distribution law.

4.7. A common thruster configuration has four thrusters at the corners of the �x
face of a spacecraft, which is a distance d from the center of mass, so the vectors
from the center of mass to the thrusters are

r1 D
2
4
�d
a

a

3
5 ; r2 D

2
4
�d
�a
a

3
5 ; r3 D

2
4
�d
�a
�a

3
5 ; r4 D

2
4
�d
a

�a

3
5

The thrusters are canted at an angle � , with tan � < a=d , so that

F1 D F2 D F
2
4

cos �
0

� sin �

3
5 ; F3 D F4 D F

2
4

cos �
0

sin �

3
5

a) Find the torques due to firing the thrusters individually.
b) Show that firing all four thrusters simultaneously gives a net thrust but no net

torque.
c) Show that firing the thrusters in pairs can give a positive or negative torque about

any axis. Thus attitude control is provided by on-pulsing pairs of thrusters when
not performing an orbit adjustment, or by off-pulsing pairs of thrusters when the
orbit is being adjusted.
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Chapter 5
Static Attitude Determination Methods

Attitude determination typically requires finding three independent quantities,
such as any minimal parameterization of the attitude matrix. The mathematics
behind attitude determination can be broadly characterized into approaches that use
stochastic analysis and approaches that do not. We restrict the term “estimation”
to approaches that explicitly account for stochastic variables in the mathematical
formulation, such as a Kalman filter or a maximum likelihood approach [29].
Black’s 1964 TRIAD algorithm was the first published method for determining the
attitude of a spacecraft using body and reference observations, but his method could
only combine the information from two measurements [2]. One year later, Wahba
formulated a general criterion for attitude determination using two or more vector
measurements [36]. However, explicit relations to stochastic errors in the body
measurements are not shown in these formulations. The connection to the stochastic
nature associated with random measurement noise was first made by Farrell in a
Kalman filtering application that appeared in a NASA report in 1964 [11], but was
not published in the archival literature until 1970 [12]. Farrell’s filter did not account
for errors in the system dynamics, which were first accounted for in a Kalman filter
developed by Potter and Vander Velde in 1968 [27].

It is useful to divide attitude determination approaches into two other categories.
The first category comprises static determination approaches that depend on mea-
surements taken at the same time, or close enough in time that spacecraft motion
between the measurements can be ignored or easily compensated for. The second
category comprises filtering approaches that make explicit use of knowledge of the
motion of the spacecraft to accumulate a “memory” of past measurements. Static
approaches have the requirement that at each time there are enough observations
available to fully compute the attitude, but they typically require no a priori attitude
estimate. A purely deterministic approach incorporates just enough observation
information to uniquely determine the attitude. For example, the TRIAD algorithm
uses only three out of the four pieces of information obtainable from two measured
vectors to compute an attitude solution. Another deterministic approach involves a
single vector measurement and a single angle measurement [30]. Over-determined
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and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__5,
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approaches use more observation information than is required to compute a full
attitude solution. For example, a star tracker onboard a space vehicle observes
line-of-sight vectors to several stars, which are compared with known inertial
line-of-sight vectors from a star catalog to determine the attitude of the vehicle.
Statistical factors, such as an attitude error covariance, can be developed from a
static solution.

In many spacecraft attitude systems, the attitude observations are naturally rep-
resented as unit vectors. Typical examples are the unit vectors giving the direction
to the Sun or a star and the unit vector in the direction of the Earth’s magnetic
field. This chapter will consider the static approaches to attitude determination using
vector measurements, beginning with TRIAD and then going on to consideration of
methods accommodating more than two measurements. We will also consider the
error bounds of the various estimators.

5.1 The TRIAD Algorithm

Some spacecraft attitude determination methods use exactly two vector measure-
ments. The two vectors are typically the unit vector to the Sun and the Earth’s
magnetic field vector for coarse Sun-magnetic attitude determination or unit vectors
to two stars tracked by two star trackers for fine attitude determination. TRIAD,
the earliest published algorithm for determining spacecraft attitude from two vector
measurements, has been widely used in both ground-based and onboard attitude
determination. The name “TRIAD” can be considered either as the word “triad” or
as an acronym for TRIaxial Attitude Determination.

Suppose that we have measured the components of two unit vectors in the
spacecraft body frame and also know these components in some reference frame.
We consider only unit vectors because the length of the vector has no information
relevant to attitude determination. Owing to the norm constraint, each of these unit
vectors contains only two independent scalar pieces of attitude information. We
have seen that three parameters are required to specify the attitude matrix A, so two
unit vector measurements are required to determine the attitude matrix, in general.
In fact two vectors overdetermine the attitude. The notation we have been using up
to now would denote the representation of a vector in the body frame as xB and the
representation in the reference frame by xR. To avoid the proliferation of subscripts,
we shall denote the representation of the two vectors in the body frame as b1 and
b2 and the representations of the corresponding vectors in the reference frame by r1
and r2. It is clear that the attitude matrix is not uniquely determined if either the pair
b1 and b2 or the pair r1 and r2 are parallel or antiparallel, because the attitude can
only be determined up to a rotation by angle about the pair of vectors in that case.

The attitude matrix to be determined is the matrix that rotates vectors from the
reference frame to the spacecraft body frame, so we would like to find an attitude
matrix such that

Ari D bi ; for i D 1; 2 (5.1)
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This is not possible in general, however, for Eq. (5.1) implies that

b1 � b2 D .Ar1/ � .Ar2/ D rT1 A
T Ar2 D r1 � r2 (5.2)

This equality is true for error-free measurements, but is not generally true in the
presence of measurement errors. Thus it is impossible to satisfy both of Eq. (5.1)
simultaneously if Eq. (5.2) is not obeyed. The classical TRIAD algorithm is based
on the assumption that one of the unit vectors, which is conventionally denoted
by b1, is much more accurately determined than the other, so the estimate satisfies
Ar1 D b1 exactly, but Ar2 D b2 only approximately.

TRIAD is based on the following idea. If we have an orthonormal right-handed
triad of vectors fv1; v2; v3g in the reference frame, and a corresponding orthonormal
right-handed triad fw1;w2;w3g in the spacecraft body frame, then the attitude
matrix

A � Œw1 w2 w3�Œv1 v2 v3�T D
3X
iD1

wivTi (5.3)

will transform the vi to the wi by

Avi D wi ; for i D 1; 2; 3 (5.4)

TRIAD forms the triad fv1; v2; v3g from r1 and r2, and the triad fw1;w2;w3g from
b1 and b2 by means of

v1 D r1; v2 D r� � r1 � r2
kr1 � r2k ; v3 D r1 � r� (5.5a)

w1 D b1; w2 D b� � b1 � b2
kb1 � b2k ; w3 D b1 � b� (5.5b)

Then the estimate of the attitude matrix, indicated by a caret, is given by Eq. (5.3) as

OATRIAD D b1rT1 C .b1 � b�/.r1 � r�/T C b�rT� (5.6)

It can easily be seen that this solution satisfies the first equality of Eq. (5.1), and
some manipulation of dot and cross products shows that it satisfies the second
equality if and only if Eq. (5.2) is obeyed. We note that the attitude matrix is
undefined if either the reference vectors or the observed vectors are parallel or
antiparallel. This is the case noted above in which there is insufficient information
to determine the attitude uniquely.

This TRIAD attitude estimate is completely independent of the component of b2
along b1 and the component of r2 along r1. This is the information that is discarded
to give the three pieces of information needed to specify the attitude matrix. Variants
of TRIAD have been proposed that use other combinations of the reference and body
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vectors to form the orthonormal triads. These have been superseded by an algorithm
to be derived later in this chapter that uses an arbitrary scalar weighting of the two
vectors.

5.2 Wahba’s Problem

We can improve on the TRIAD method in two ways: by allowing arbitrary weighting
of the measurements and by allowing the use of more than two measurements. The
latter is especially important for use with star trackers that can track many stars
simultaneously. Almost all of these improvements are based on a problem posed in
1965 by Grace Wahba [36]. Wahba’s problem is to find the orthogonal matrix A
with determinant C1 that minimizes the loss function

L.A/ � 1

2

NX
iD1

aikbi � Arik2 (5.7)

where fbig is a set of N unit vectors measured in a spacecraft’s body frame, frig
are the corresponding unit vectors in a reference frame, and faig are non-negative
weights. We will discuss the choice of weights in Sect. 5.5.

Using the orthogonality of A, the unit norm of the unit vectors, and the cyclic
invariance of the trace, Eq. (2.11c), gives

kbi � Arik2 D kbik2 C kArik2 � 2bi � .Ari / D 2 � 2 tr.AribTi / (5.8)

Thus we can write the loss function in the very convenient form

L.A/ D 	0 � tr.ABT / (5.9)

with

	0 �
NX
iD1

ai (5.10)

and the “attitude profile matrix” B defined by

B �
NX
iD1

aibirTi (5.11)

Now it is clear the loss function is minimized when tr.ABT / is maximized. This has
a close relation to the orthogonal Procrustes problem, which is equivalent to finding
the orthogonal matrix A that is closest to B in the Frobenius norm (also known as
the Euclidean, Schur, or Hilbert-Schmidt norm) [17]

kMk2F � tr.MMT / (5.12)
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It follows from

kA � Bk2F D kAk2F C kBk2F � 2tr.ABT / D 3C kBk2F � 2tr.ABT / (5.13)

that Wahba’s problem is equivalent to the orthogonal Procrustes problem with the
proviso that the determinant of A must beC1.

Algorithms for solving Wahba’s problem fall into two classes. The first solves for
the attitude matrix directly, and the second solves for the quaternion representation
of the attitude matrix. With error-free mathematics, all algorithms should lead to
the same attitude, and testing shows this to be the case [5, 24]. Some algorithms
are faster than others, but execution speeds with modern processors make speed
differences less important [4, 24]. Quaternion solutions have proven to be much
more useful in practice, so we will consider them first.

5.3 Quaternion Solutions of Wahba’s Problem

5.3.1 Davenport’s q Method

Paul Davenport provided the first useful solution of Wahba’s problem for spacecraft
attitude determination [18]. He substituted Eq. (2.129) into Wahba’s loss function
to get

L.A.q// D 	0 �
NX
iD1

aibTi A.q/ri D 	0 �
NX
iD1

aibTi �
T .q/�.q/ri (5.14)

Using several relations from Sect. 2.7 gives

bTi �
T .q/�.q/ri D

�
bi
0

�T
Œqˇ�T Œq˝�

�
ri
0

�
D .qˇ bi /T .q˝ ri /

D .bi ˝ q/T .ri ˇ q/ D qT Œbi˝�T Œriˇ�q (5.15)

This allows us to express the loss function as

L.A.q// D 	0 � qTK.B/q (5.16)

where K.B/ is the symmetric traceless matrix

K.B/ D
NX
iD1

ai Œbi˝�T Œriˇ� D
�
B C BT � .trB/I3 z

zT trB

�
(5.17)
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with

z �
2
4
B23 � B32
B31 � B13
B12 � B21

3
5 D

NX
iD1

ai .bi � ri / (5.18)

It is known that a real symmetric n � n matrix has n real eigenvalues and n

real eigenvectors that can be chosen to form an orthonormal basis [15, 17]. The
eigenvalue/eigenvector decomposition of K can be written as

K.B/ D
4X
iD1

	iqiqTi (5.19)

where qi is the eigenvector with eigenvalue 	i , and the eigenvalues are labeled so
that 	max � 	1 � 	2 � 	3 � 	4. Taking the trace of this equation and using the
cyclic invariance of the trace and the orthonormality of the eigenvectors gives the
well known result that the trace of a diagonalizable matrix is equal to the sum of its
eigenvalues

tr.K.B// D
4X
iD1

	i (5.20)

Equation (5.17) shows that the trace of K.B/ is zero, so this means that the sum of
the eigenvalues is zero:

4X
iD1

	i D 0 (5.21)

Substituting Eq. (5.19) into Eq. (5.16) gives

L.A.q// D 	0 �
4X
iD1

	i .qT qi /2 D 	0 � 	1
4X
iD1
.qT qi /2 C

4X
iD1
.	1 � 	i /.qT qi /2

D 	0 � 	1 C
4X
iD2
.	1 � 	i /.qT qi /2 (5.22)

where the third equality holds because the four eigenvectors constitute an orthonor-
mal basis and because the i D 1 term in the second sum vanishes identically. The
loss function is minimized if the quaternion is orthogonal to q2, q3, and q4, i.e. the
optimal quaternion is the normalized eigenvector of K corresponding to the largest
eigenvalue

Oq D q1 (5.23)

This result can also be derived by using a Lagrange multiplier to append the
quaternion norm constraint to the loss function [8].
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The optimized loss function is easily seen to be equal to

L.A. Oq// D 	0 � 	max (5.24)

which explains our choice of the notation 	0 for the sum of the weights. The loss
function is non-negative by definition, so it must be true that 	max � 	0. Since
we expect the optimal value of the loss function to be small, the value of 	0 � 	max

provides a very useful data quality check. Shuster has shown that if the measurement
errors are Gaussian and the weights ai are chosen to be the inverse measurement
variances, then TASTE � 2.	0�	max/ will obey a �2 probability distribution with
2N � 3 degrees of freedom to a very good approximation [33].

Davenport’s algorithm does not have a unique solution if the two largest
eigenvalues of K.B/ are equal. This is not a failure of the q method; it means that
the data are not sufficient to determine the attitude uniquely. Very robust algorithms
exist to solve the symmetric eigenvalue problem, and Davenport’s method remains
the best method for solving Wahba’s problem if one has access to one of these
eigenvalue decomposition algorithms.

5.3.2 Quaternion Estimator (QUEST)

Davenport’s q method was used to compute attitude estimates for the High Energy
Astronomy Observatory (HEAO-B) in 1978; but it could not provide the more
frequent attitude computations required by the MAGSAT spacecraft, launched 1
year later, using the computers of the time. The QUEST algorithm was devised
to answer this need, and has become the most widely used algorithm for solving
Wahba’s problem [24, 31, 35].

We can express Davenport’s eigenvalue condition as

04 D H.	max/ Oq (5.25)

where

H.	/ � 	I4 �K.B/ D
�
.	C trB/I3 � S �z

�zT 	 � trB

�
(5.26)

and

S � B C BT (5.27)

Equation (5.25) is equivalent to the two equations

.�I3 � S/ Oq1W3 D Oq4z (5.28a)

.	max � trB/ Oq4 � zT Oq1W3 D 0 (5.28b)
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where

� � 	max C trB (5.29)

If we knew 	max, Eqs. (5.28a) and (2.16) would give the optimal quaternion as

Oq D ˛
�

adj.�I3 � S/z
det.�I3 � S/

�
(5.30)

where ˛ is determined by normalization of Oq. Substituting Eq. (5.30) into Eq. (5.28b)
gives an implicit equation for the maximum eigenvalue

.	max � trB/ det.�I3 � S/ � zT adj.�I3 � S/z D 0 (5.31)

This is just the characteristic equation ofK.B/. We convert it to an explicit equation
for 	max by using the definitions of the adjoint and the determinant to write

adj.�I3 � S/ D adjS C �S C �.� � trS/I3 (5.32)

and

det.�I3 � S/ D �3 � �2trS C �� � detS (5.33)

where

� � tr.adjS/ (5.34)

The expression for the adjoint is further simplified by applying the Cayley-Hamilton
Theorem, which says that a matrix obeys its own characteristic equation [17], to the
matrix S . With Eq. (2.103) this means that

S3 � S2trS C S tr.adjS/ � I3 detS D 03�3 (5.35)

Multiplying through by adjS and using Eq. (2.15) and a little algebra gives

adjS D S2 � S trS C �I3 (5.36)

With these substitutions Eq. (5.31) can be written as a quartic equation for 	:

0 D  QUEST.	/ �
�
	2�.trB/2 C�� �	2�.trB/2 �kzk2�

� .	 � trB/.zT SzC detS/ � zT S2z D
4Y
iD1
.	 � 	i / (5.37)
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We have written 	 instead of 	max because this equation has four roots. We are only
interested in the largest root, though. Shuster’s important observation was that 	max

can be easily obtained by Newton-Raphson iteration of Eq. (5.37) starting from 	0 as
the initial estimate, since these two values will be very nearly equal if the optimized
loss function is small, as we have previously observed. In fact, a single iteration
is generally sufficient, and the approximation 	max D 	0 is adequate in many
cases. It is useful to perform at least one iteration, however, in order to compute
the quantity TASTE for data validation.

The efficiency of the QUEST algorithm results from its replacement of the
iterative operations on 4 � 4 matrices required by Davenport’s q method with
iterative scalar computations followed by straightforward matrix multiplications.
Numerical analysts know that solving the characteristic equation is not the best
way to find eigenvalues, in general, so QUEST is in principle less robust than
Davenport’s method. QUEST has proven to be extremely robust in practice, though,
as long as the characteristic equation is evaluated in the partially-factored form
shown in Eq. (5.37) [5]. The quartic characteristic equation has an analytic solution,
but this solution is slower, no more accurate, and sometimes less reliable than
Newton-Raphson iteration.

5.3.3 Another View of QUEST

The QUEST solution can be related to the adjoint of the matrix H defined in
Eq. (5.26). With Eq. (5.19) and I4 DP4

iD1 qiqTi , we can express H in the form

H.	/ D
4X
iD1
.	 � 	i /qiqTi (5.38)

The adjoint of this matrix is

adjH.	/ D
4X
iD1
.	 � 	j /.	 � 	k/.	 � 	`/qiqTi (5.39)

where fi; j; k; `g is a permutation of f1; 2; 3; 4g. Setting 	 D 	max D 	1 gives

adjH.	max/ D .	max � 	2/.	max � 	3/.	max � 	4/q1qT1 D � Oq OqT (5.40)

where � is positive if 	1 ¤ 	2, which we have seen to be the condition for
uniqueness of the attitude solution. In fact, � is just d QUEST=d	 evaluated at
	 D 	max. Daniele Mortari was the first to recognize the significance of the matrix
adjH [25].
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The 4�4 component of Eq. (5.40) is1

ŒadjH.	max/�44 D det.�I3 � S/ D � Oq24 (5.41)

and the other three elements of the fourth column are

ŒadjH.	max/�k4 D Œadj.�I3 � S/z�k D � Oq4 Oqk for k D 1; 2; 3 (5.42)

Comparison with Eq. (5.30) establishes that the QUEST quaternion estimate is just
the normalized fourth column of adjH.	max/ and that

˛ D ˙.� Oq4/�1 D ˙Œ� det.�I3 � S/��1=2 (5.43)

Equation (5.41) clearly shows that q4 is zero if �I3 � S is singular, or equivalently
that the estimate in this case is a 180ı rotation. We can also see that ˛ is infinite
in this limit. Quaternion normalization requires that kadj.�I3 � S/zk tends to
Œ� det.�I3 � S/�1=2 in the singular limit, so it is clear that the QUEST computation
of the quaternion loses all numerical significance. This is quite different from the
failure of Wahba’s problem to have a unique solution if the two largest eigenvalues
of K.B/ are equal, and it can be avoided by a method discussed in the following
section.

5.3.4 Method of Sequential Rotations

Shuster discovered the indeterminacy of the QUEST solution when �I3 � S is
singular, and he introduced the method of sequential rotations to deal with the
problem [31, 34, 35]. The idea behind this method is to solve for a quaternion
qk � qBRk representing the attitude with respect to a rotated reference frame Rk .
The attitude quaternion q � qBR with respect to the original frame R is the product
of qk and the quaternion qRkR representing the rotation between frames R and Rk .
For simplicity, the frames are related by a 180ı rotation about one of the coordinate
axes, i.e.

q � qBR D qBRk ˝ qRkR D qk ˝ q.ek; /

D
�

qk1W3
qk4

�
˝
�

ek
0

�
D
�
qk4 ek C ek � qk1W3
�ek � qk1W3

�
D Ekqk (5.44)

where ek is the unit vector along the kth coordinate axis and where

Ek �
�
Œek�� ek
�eTk 0

�
(5.45)

1We are indebted to Yang Cheng for providing the basis of the discussion in this paragraph.
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The matrix Ek is skew-symmetric and orthogonal. It has exactly one element with
the value ˙1 in each column and exactly one element with the value ˙1 in each
row; all its other elements are zero. Thus Ek is like a permutation matrix except
for the minus signs. This means that the transformation from qk to q requires no
multiplications; it merely permutes the components of the quaternion with some
sign changes. The inverse transformation is

qk D q˝ q.ek;�/ D ET
k q (5.46)

We see that the kth component of q ends up as the fourth component of qk .
Because q is a unit quaternion, at least one of its components must have magnitude
greater than or equal to 1=2, so it is always possible to find a reference frame
rotation that results in qk4 having magnitude of at least 1=2. Since QUEST prefers to
keep the magnitude of this component away from zero, it follows that the optimal
reference frame rotation is a rotation about the axis corresponding to the component
of q having the largest magnitude. If the fourth component of q has the largest
magnitude, no reference frame rotation is required.

These rotations are easy to implement on the input data, since a 180ı rotation
about the kth coordinate axis simply changes the signs of the i th and j th
components of each reference vector, where fi; j; kg is a permutation of f1; 2; 3g.
This is equivalent to changing the signs of the i th and j th columns of the B matrix.
The reference system rotation is easily undone by Eq. (5.44) after the optimal
quaternion in the rotated frame has been computed.

The original QUEST implementation performed sequential rotations one axis at a
time, until an acceptable reference coordinate system was found. It is not necessary
to find a rotation resulting in qk4 � 1=2, it is only necessary for qk4 to be larger than
some chosen value. It is clearly preferable to save computations by choosing a single
desirable rotation as early in the computation as possible. This can be accomplished
by considering the components of an a priori quaternion if one is available. An a
priori quaternion is generally available before computing the final attitude estimate
in a star tracker application since an approximate attitude estimate is needed to
identify the stars in the tracker’s field of view. This is either available from a previous
estimate or is produced by a “lost-in-space” algorithm using fewer (generally three
or four) stars than are employed for the final attitude estimate.

We now want to show the effect of reference frame rotations on Davenport’s
K matrix. This is not part of the implementation of QUEST, but serves to show
the relation to the next algorithm we will consider. Putting A.q/ instead of B into
Davenport’s definition of the K matrix gives

K.A.q// D 4q qT � I4 (5.47)

Equation (5.21) allows us to rewrite Eq. (5.19) as

K.B/ D K.B/ � 1
4

 
4X
iD1

	i

!
I4 D 1

4

4X
iD1

	i .4qiqTi � I4/ D
1

4

4X
iD1

	iK.A.qi //

(5.48)
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Because K.�/ is a linear function of its argument, it follows from Eq. (5.17) that2

B D 1

4

4X
iD1

	iA.qi / (5.49)

In the rotated reference frame, we have

Bk D BA.ek;�/ D 1

4

4X
iD1

	iA.qi /A.ek;�/

D 1

4

4X
iD1

	iA.qi ˝ q.ek;�// D 1

4

4X
iD1

	iA.E
T
k qi / (5.50)

But then we have

K.Bk/ D 1

4

4X
iD1

	iK.A.E
T
k qi // D 1

4

4X
iD1

	iE
T
k .4qiqTi � I4/Ek D ET

k K.B/Ek

(5.51)

This result would be achieved much more directly if we could simply assert that
all the eigenvectors of K transform according to Eq. (5.46) under reference frame
rotations, but that is not necessarily true unless the four eigenvalues of K.B/ are
distinct.

We have shown that the effect of a reference frame rotation on K.B/ is to
permute its rows and columns, with some sign changes. The form of Ek shows that
rows and columns 4 and k are interchanged, as are the rows and columns labeled i
and j . From this viewpoint, the purpose of reference frame rotations is to move the
kth row and column of K.B/ to the lower-right corner of K.Bk/.

5.3.5 Estimator of the Optimal Quaternion (ESOQ)

ESOQ avoids the need for explicit reference frame rotations by treating the four
components of the quaternion more symmetrically than QUEST [24, 25]. It is
similar in finding 	max by Newton-Raphson iteration of the characteristic equation
of Davenport’s K matrix and in locating the component of q with the maximum
magnitude. The algorithm is based on Mortari’s observation that the optimal

2Let M denote the 3 � 3 matrix defined by the right side of Eq. (5.49). The 4�4 component
of Eq. (5.48) means that trB D trM . Then the upper left 3 � 3 submatrix of Eq. (5.48) says
that B C BT D M C MT . Finally, the remaining 3 � 1 and 1 � 3 submatrices tell us that
B � BT D M �MT , establishing Eq. (5.49).
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quaternion can be computed by normalizing any column of adjH.	max/, not just
the fourth column. The implementation of this idea is straightforward.

Let Hk denote the symmetric 3 � 3 matrix obtained by deleting the kth row and
kth column from H.	max/, where k can be any index between 1 and 4, and let
hk denote the three-component column vector obtained by deleting the kth element
from the kth column ofH.	max/. Then the kth component of the optimal quaternion
is given by

Oqk D �˛0 detHk (5.52)

and the other three components are given by3

� Oq1Wk�1
OqkC1W4

�
D ˛0.adjHk/hk (5.53)

where ˛0 can be determined by quaternion normalization. The index k is chosen by
finding the largest diagonal element ŒadjH.	max/�kk D detHk of the adjoint matrix,
or as the index of the largest component of an a priori quaternion.

Assuming that QUEST and ESOQ use the same value for 	max, it is obvious that
their equations for the optimal quaternion are identical for k D 4. The results of
the previous section show that the only difference for other values of k is in some
intermediate multiplications, for which any reasonable computer gives .�a/b D
a.�b/ and .�a/.�b/ D ab exactly. Variations in implementation details may give
rise to some differences, of course.

Between these two algorithms, ESOQ may be preferred for replacing some
computations with simple indexing operations. However, the computational savings
are not large, and implementations of QUEST incorporating extensive error checks
have a long history of successful application.

5.3.6 Second Estimator of the Optimal Quaternion (ESOQ2)

The following presentation differs somewhat from Mortari’s original derivation,
but is equivalent [24, 26]. Multiplying Eq. (5.28a) by .	max � trB/, substituting
Eq. (5.28b) for .	max � trB/ Oq4 on the right side, and rearranging gives

M Oq1W3 D 03 (5.54)

where

M � .	max � trB/.�I3 � S/ � zzT D Œm1 m2 m3� (5.55)

Computing the determinant of M and comparing with Eq. (5.31) gives

detM D .	max � trB/2 det.	maxI4 �K/ (5.56)

3We employ the convention that x1W0 or x5W4 is an empty vector, with no components.



196 5 Static Attitude Determination Methods

It follows from 	max being an eigenvalue of K.B/ that M is singular, as it must be
for Eq. (5.54) to have a non-trivial solution. Thus the three columns of M lie in a
plane to which Oq1W3 must be orthogonal, so we can write

Oq1W3 D ˛00.	max � trB/.mi �mj / (5.57)

for some scalar ˛00 and for any pair of non-equal indices i and j . It is best to choose
the indices to select the cross product with maximum norm.4 Then Oq4 is determined
by Eq. (5.28b), giving

Oq D ˛00
�
.	max � trB/.mi �mj /

z � .mi �mj /

�
(5.58)

where ˛00 can be determined by quaternion normalization. These computations lose
numerical significance if .	max� trB/ is close to zero, but we can avoid this singular
condition by using a reference system rotation to minimize trB . No rotation is
performed if trB is the minimum of fB11; B22; B33; trBg while a rotation about the
i th axis is performed if Bii is the minimum. As in the QUEST case, the rotation
is easily undone by Eq. (5.44) after the quaternion has been computed. Note that
either an optimal or a merely acceptable rotated frame for ESOQ2 can be found
by inspection of the B matrix, requiring neither an a priori attitude estimate nor an
iterative search.

5.4 Matrix Solutions of Wahba’s Problem

5.4.1 Singular Value Decomposition (SVD) Method

J. L. Farrell and J. C. Stuelpnagel presented one of the first solutions of Wahba’s
problem [13]. They performed a polar decomposition of B into the product of
an orthogonal matrix and a symmetric positive semidefinite matrix, followed by a
diagonalization of the symmetric matrix. This two-step process is equivalent to the
single-step procedure known as the singular value decomposition, for which very
robust algorithms have been developed, so we will only discuss the latter method
[15, 17, 19].

The singular value decomposition of the attitude profile matrix is given by

B D U˙V T D U diag.Œs1 s2 s3�/V
T (5.59)

4One of the eigenvalues of the singular matrix M is zero, so its eigenvalue decomposition is M D
�1vvT C�2wwT . Then mi � mj D �1�2.v � w/k.v � w/, where fi; j; kg is a cyclic permutation
of f1; 2; 3g. The optimal indices are thus those with maximum j.mi � mj /k j.
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where U and V are orthogonal, and s1 � s2 � s3 � 0 [15]. The matrices U and
V are not guaranteed to have determinant C1, and we are only interested in proper
orthogonal matrices, so it is convenient to define the rotation matrices

UC � U diag.Œ1 1 detU �/ and VC � V diag.Œ1 1 detV �/ (5.60)

Then

B D UC˙ 0V TC D UCdiag.Œs1 s2 s
0
3�/V

TC (5.61)

where

s0
3 � s3 detU detV (5.62)

and s1 � s2 � js0
3j. We now define a rotation matrix and its Euler axis/angle

representation by

W � UTCAVC D .cos#/I3 � sin#Œe��C .1 � cos#/eeT (5.63)

Using the cyclic invariance of the trace, Eq. (2.11c), gives

tr.ABT / D tr.W˙ 0/ D eT ˙ 0eC cos#
�
tr˙ 0 � eT˙ 0e

	

D eT ˙ 0eC cos#Œs2 C s0
3 C e22.s1 � s2/C e23.s1 � s0

3/� (5.64)

The trace is maximized for # D 0, which gives W D I3 and thus the optimal
attitude matrix

OA D UCV TC D U diag.Œ1 1 detU detV �/V T (5.65)

The optimized loss function is easily seen to be equal to

L. OA/ D 	0 � tr. OABT / D 	0 � tr˙ 0 D 	0 � .s1 C s2 C s0
3/ (5.66)

and comparison with Eq. (5.24) shows that

	max D s1 C s2 C s0
3 (5.67)

Equation (5.64) reduces to tr.ABT / D s1�.1�cos#/Œe22.s1�s2/Ce23.s1�s0
3/� if

s2C s0
3 D 0. The loss function does not have a unique minimum in this case because

it is invariant under a rotation by any angle about the axis e1 � Œ1 0 0�T . We will see
shortly that this non-uniqueness is the same as the one found in Davenport’s method
when the two largest eigenvalues of K.B/ are not distinct.
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5.4.2 Fast Optimal Attitude Matrix (FOAM)

This method bears the same relationship to the SVD method as QUEST bears
to Davenport’s q method. It computes 	max iteratively and uses simple matrix
operations to avoid the need to perform the singular value decomposition of the
attitude profile matrix [20]. Equation (5.61) allows us to write

detB D s1s2s0
3 (5.68a)

kBk2F D s21 C s22 C .s0
3/
2 (5.68b)

adjBT D UCdiag.Œs2s
0
3 s

0
3s1 s1s2�/V

TC (5.68c)

BBTB D UCdiag.Œs31 s
3
2 .s

0
3/
3�/V TC (5.68d)

Then the optimal attitude matrix can be represented as

OA D
�
	2maxCkBk2F

	
B C 2	max adjBT � 2BBTB

	max
�
	2max�kBk2F

	 � 2 detB
(5.69)

Substituting Eqs. (5.61), (5.67) and (5.68) into this representation, performing some
straightforward algebra, and comparing the result with Eq. (5.65) establishes its
validity. With the exception of 	max, all the quantities in Eq. (5.69) can be computed
by straightforward algebraic operations. We find the maximum eigenvalue from

	max D 	0 � L. OA/ D tr. OABT / (5.70)

Substituting Eq. (5.69) and taking the trace, with 	 in place of 	max, gives

0 D  FOAM.	/ �
�
	2�kBk2F

	2 � 8	 detB � 4kadjBk2F D
4Y
iD1
.	 � 	i / (5.71)

where we have used the identity

kBk4F � tr.BBTBBT / D 2kadjBk2F (5.72)

which is easily verified using the singular value decomposition. The numerical coef-
ficients in  QUEST.	/ and  FOAM.	/ must be identical with error-free mathematics,
since both functions are forms of the characteristic equation of Davenport’s K
matrix. The FOAM form is somewhat simpler, though, and has also been employed
in ESOQ and ESOQ2 implementations.
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Substituting Eqs. (5.68a)–(5.68c) into Eq. (5.71) gives the eigenvalues of the K
matrix in terms of the singular values5:

	1 D s1 C s2 C s0
3 (5.73a)

	2 D s1 � s2 � s0
3 (5.73b)

	3 D �s1 C s2 � s0
3 (5.73c)

	4 D �s1 � s2 C s0
3 (5.73d)

The denominator of Eq. (5.69) is equal to

2.s2 C s0
3/.s

0
3 C s1/.s1 C s2/ D .	1 � 	2/.	1 � 	3/.	1 � 	4/=4 (5.74)

This clearly shows that the FOAM algorithm fails if s2 C s0
3 D 	1 � 	2 D 0, which

is the same indication of unobservability that we noted with Davenport’s q method
and the SVD method.

5.4.3 Wahba’s Problem with Two Observations

The two-observation case is of special interest for two reasons. The first is that the
characteristic equation for K.B/ has a simple closed-form solution in this case,
as was noted very early [35]. The second reason is that the solution to Wahba’s
problem with two observations gives a generalization of the TRIAD method for
arbitrary measurement weights [21, 22].

Several simplifications follow from having only two observations:

detB D 0 (5.75a)

BBT D a21b1bT1 C a22b2bT2 C a1a2.r1 � r2/.b1bT2 C b2bT1 / (5.75b)

kBk2F D a21 C a22 C 2a1a2.b1 � b2/.r1 � r2/ (5.75c)

adjBT D a1a2.b1 � b2/.r1 � r2/T (5.75d)

kadjBkF D a1a2kb1 � b2kkr1 � r2k (5.75e)

It then follows from Eq. (5.71) that

	max D
˚
a21 C a22 C 2a1a2Œ.b1 � b2/.r1 � r2/C kb1 � b2kkr1 � r2k�

�1=2
(5.76)

5Paul Davenport discovered these relations, but did not publish them.
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This can be used in QUEST, ESOQ, ESOQ2, or FOAM, avoiding the need for
Newton-Raphson iteration. If we define �b to be the angle between b1 and b2, and
�r to be the angle between r1 and r2, then

	max D
�
	20 � 4a1a2 sin2

�
�b � �r
2

��1=2
(5.77)

This form provides some insight, but is less useful for computation than Eq. (5.76).
Substituting Eqs. (5.75a)–(5.75e) into (5.69) gives, after some algebra

OA D .a1=	max/
�
b1rT1 C .b1 � b�/.r1 � r�/T

�

C.a2=	max/
�
b2rT2 C .b2 � b�/.r2 � r�/T

�C b�rT� (5.78)

using the notation of Sect. 5.1. It is obvious from this equation that the optimal
attitude estimate maps r1 and r2 into the plane spanned by b1 and b2. The TRIAD
solution also has this property, so the difference between the Wahba and TRIAD
estimates can be represented as a rotation about the axis b�, which is the normal
vector to the plane containing b1 and b2.

It is also easy to see that the solution has a unique limit as either observation
weight goes to zero. This limit is the TRIAD solution of Eq. (5.3) if a2 D 0, and it is
the TRIAD solution with the roles of the two observations interchanged if a1 D 0.
This limit was already noted in [35]. For general weights, the optimal solution is
some sort of an average of the two TRIAD solutions. It is not a simple average,
though, because a simple average would not give an orthogonal attitude matrix. It is
interesting that Eq. (5.78) has a unique limit as either observation weight goes to
zero even though Wahba’s loss function does not have a unique minimum in either
limit, because it effectively includes only one observation.

There is an equivalent closed-form solution for the quaternion [21]:

Oq D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

1

2
p
�.� C ˛/.1C b� � r�/

"
.� C ˛/.b� � r�/C ˇ.b� C r�/

.� C ˛/.1C b� � r�/

#
for ˛ � 0

1

2
p
�.� � ˛/.1C b� � r�/

"
ˇ.b� � r�/C .� � ˛/.b� C r�/

ˇ.1C b� � r�/

#
for ˛ < 0

(5.79)
where

˛ � .1C b� � r�/.a1b1 � r1 C a2b2 � r2/C .b� � r�/ � .a1b1 � r1 C a2b2 � r2/

(5.80a)

ˇ � .b� C r�/ � .a1b1 � r1 C a2b2 � r2/ (5.80b)

� �
p
˛2 C ˇ2 (5.80c)
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The above expressions are indeterminate when b� D �r�, and are unreliable
near this singular condition. This problem can be avoided by applying one of the
reference frame rotations of Sect. 5.3.4. The effect of a 180ı rotation about the i th
axis on the inner product b� � r� is

.b� � r�/rotated D Œ.b�/i � .r�/i � .b�/j � .r�/j � .b�/k � .r�/k�unrotated

D Œ2.b�/i � .r�/i � b� � r��unrotated (5.81)

We ensure the largest value for .b� � r�/rotated by performing the estimation in the
original reference frame if b� � r� is larger than any of the products .b�/i � .r�/i in
this frame, or by rotating about the axis with maximum .b�/i � .r�/i if this is greater
than b� � r�. More details can be found in [21].

5.5 Error Analysis of Wahba’s Problem

The value of an estimate is greatly enhanced by knowledge of its accuracy. In fact,
Malcolm Shuster’s covariance analysis of the QUEST algorithm was at least as
important as his invention of the algorithm itself.6 This section will provide an
estimate of the accuracy of a solution to Wahba’s problem. Because all algorithms
yield the same estimate, assuming that it is unique, we only need to analyze the
errors exhibited by one algorithm. We will use Davenport’s q method, which leads
most directly to the desired result.

5.5.1 Attitude Error Vector

Attitude errors are most usefully expressed in the spacecraft’s body frame, so we
parameterize the attitude errors by the first-order rotation vector ı# representing
the rotation between the estimated body frame OB and the true body frame B . The
goal of this section is to find an expression for ı# in terms of the errors of the body
and reference frame vectors. Attitude errors are expected to be small, so we do not
have to worry about singularities of the rotation vector representation. We represent
the attitude by a quaternion, so

Oq � q OBR D q OBB ˝ qBR D Œq OBB˝�qBR D expŒ.ı#=2/˝�qBR (5.82)

where we have used Eq. (2.127). All our error analysis will be carried out only to
first order in small quantities, so we can approximate

expŒ.ı#=2/˝� D I4 C Œ.ı#=2/˝� (5.83)

6Much more important, in Paul Davenport’s opinion.
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which gives

Oq D qBR C .1=2/ ı# ˝ qBR (5.84)

The analysis of errors in the spacecraft’s body frame does not depend on the
specification of the reference frame R, so we are free to choose this to coincide
with the body frame. With this choice, qBR is the identity quaternion, and Eq. (5.84)
reduces to

Oq D
�

03
1

�
C 1

2

�
ı#

0

�
(5.85)

The body frame vectors bi and reference frame vectors ri are equal to their true,
error-free, values plus some errors. Because we take the reference frame to be the
body frame, the true values of the reference vectors and body vectors are identical.
Thus the attitude profile matrix is

B D
NX
iD1

ai .btrue
i C�bi /.btrue

i C�ri /T D B0 C�B (5.86)

where

B0 �
NX
iD1

aibtrue
i .btrue

i /T (5.87)

�B �
NX
iD1

ai Œbtrue
i �rTi C�bi .btrue

i /T � (5.88)

and we have ignored terms of higher than first order. The matrix B0 is symmetric,
and its trace is 	0, so

K.B0/ D
�
2B0 � 	0I3 03

0T3 	0

�
(5.89)

We see that K.B0/qBR D K.B0/Iq D 	0Iq , so the maximum eigenvalue is equal
to 	0 for error-free measurements. This is expected because the loss function must
be zero if the measurement errors are zero. The other three eigenvectors of K0 have
three-vector part q1W3 D xi and scalar part q4 D 0, where xi is an eigenvector of
.2B0 � 	0I3/ with eigenvalue 	iC1, for i D 1; 2; 3.

Now let us turn to �B . Both btrue
i C�bi and btrue

i are unit vectors, so

1 D kbtrue
i C�bik2 D 1C 2btrue

i ��bi C k�bik2 (5.90)
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The same relation holds for ri D btrue
i C�ri , so

btrue
i ��bi D �1

2
k�bik2 and btrue

i ��ri D �1
2
k�rik2 (5.91)

It follows that tr.�B/ D 0, to first order in the vector errors. The z vector associated
with �B is, also to first order

�z D
NX
iD1

ai .btrue
i C�bi / � .btrue

i C�ri / D
NX
iD1

aibtrue
i � .�ri ��bi / (5.92)

and so

K.�B/ D
�
�B C�BT �z

�zT 0

�
(5.93)

Putting all this into Davenport’s eigenvalue equation gives

K.B/ Oq D ŒK.B0/CK.�B/�
��

03
1

�
C 1

2

�
ı#

0

��

D 	max Oq D .	0 C�	/
��

03
1

�
C 1

2

�
ı#

0

��
(5.94)

Multiplying this out, discarding terms of second order, and canceling the common
zeroth-order term K.B0/Iq D 	0Iq on the two sides gives

1

2
K.B0/

�
ı#

0

�
CK.�B/

�
03
1

�
D 1

2
	0

�
ı#

0

�
C�	

�
03
1

�
(5.95)

Inserting the explicit forms of K.B0/ and K.�B/ gives

�
.1=2/.2B0 � 	0I3/ı# C�z

0

�
D
�
.1=2/	0 ı#

�	

�
(5.96)

The fourth component of this equation says that�	 is zero to first order in the errors
in the vectors. This means that the loss function is of second order in these errors,
which is in accordance with its definition. The first three components of Eq. (5.96)
are more interesting; they give

ı# D .	0I3 � B0/�1�z D .	0I3 � B0/�1
NX
iD1

aibtrue
i � .�ri ��bi / (5.97)
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This is the key result; it expresses the attitude error rotation vector in terms of the
errors in the body frame vectors and the reference vectors, with the latter mapped
into the true body frame. Is is also interesting to note that

	0I3 � B0 D
NX
iD1

ai
�
I3 � btrue

i .btrue
i /T

�
(5.98)

The discussion following Eq. (5.89) shows that this matrix is singular if the largest
two eigenvalues of K0 are equal.

5.5.2 Covariance Analysis of Wahba’s Problem

If we knew the errors of the vectors in the spacecraft body frame and the reference
frame, we would correct the vectors before performing the estimation, and they
would no longer be errors. The usual situation is that the errors are unknown,
but they have some statistical distribution with known properties. These properties
are given by expected values over the probability distribution. The details of the
probability distribution are not important for this section; we only need to know the
expected values of some quantities.

We assume that the vector errors have zero mean, except for components along
btrue
i that are necessary to satisfy the norm constraint of Eq. (5.91). Thus their

expected values are assumed to satisfy, for all i

Ef�big D �1
2
Efk�bik2gbtrue

i and Ef�rig D �1
2
Efk�rik2gbtrue

i (5.99)

The usual justification of this assumption is that we would estimate and correct for
any other non-zero means of these quantities before estimating the attitude. Now
the only stochastic quantities in Eq. (5.97) are ı# , �z, �ri , and �bi ; the other
quantities are deterministic. Computing expected values is a linear operation, and
the cross product of a vector with itself is zero, so it follows that

Efı#g D .	0I3 � B0/�1
NX
iD1

aibtrue
i � .Ef�rig �Ef�big/ D 03 (5.100)

This shows that the expected value of the attitude error ı# is zero, which means that
a solution of Wahba’s problem is an unbiased estimator.

We are interested in the expected spread of the attitude estimates about the mean
value. This is given by the covariance matrix

P## � E
˚
.ı# �Efı#g/.ı# �Efı#g/T � D Efı# ı#T g (5.101)
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Substituting Eq. (5.97) gives

P## D .	0I3 � B0/�1Ef�z�zT g.	0I3 � B0/�1 (5.102)

Further progress requires some assumptions about the covariance of the vector
errors. We assume that the errors in the individual vectors are uncorrelated, meaning
that

Ef�bi �bTj g D Ef�ri �rTj g D 0 for i ¤ j (5.103a)

Ef�bi �rTj g D 0 for all i; j (5.103b)

We also define the measurement covariance matrices by

Rbi � Ef�bi �bTi g (5.104a)

Rri � Ef�ri �rTi g (5.104b)

Then

Ef�z�zT g D
NX

i;jD1
aiaj Œbtrue

i ��Ef.�ri ��bi /.�rj ��bj /T gŒbtrue
j ��T

D
NX
iD1

a2i Œb
true
i ��.Rri CRbi /Œbtrue

i ��T (5.105)

and

P## D .	0I3 � B0/�1
(

NX
iD1

a2i Œb
true
i ��.Rri CRbi /Œbtrue

i ��T
)
.	0I3 � B0/�1

(5.106)

We now make a further simplifying assumption about the vector errors, namely
that they are axially symmetric about the true vectors. We also ignore the compo-
nents along the true vectors shown in Eq. (5.99), which are of higher order than the
terms we retain. These assumptions are expressed in the equations

Rri D �2ri
�
I3 � rtrue

i .rtrue
i /T

� D ��2ri
�
rtrue
i �

�2
(5.107a)

Rbi D �2bi
�
I3 � btrue

i .btrue
i /T

� D ��2bi
�
btrue
i �

�2
(5.107b)

This has become known as the QUEST Measurement Model (QMM). If we think of
the error-corrupted vectors as arrows with a common base, their points should all lie
on a unit sphere. The QUEST measurement model is essentially the approximation
that the points all lie on the plane that is tangent to the unit sphere at the location of
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the true unit vector. This is certainly a good approximation if the errors are small.
We note that Efk�rik2g D trRri and Efk�bik2g D trRbi , so Eq. (5.99) becomes,
for the QMM,

Ef�rig D ��2ri rtrue
i and Ef�big D ��2bibtrue

i (5.108)

It is useful to combine the error variances of the body frame vectors and reference
frame vectors into overall measurement variances

�2i � �2ri C �2bi (5.109)

Remembering that we have assumed rtrue
i D btrue

i for our error analysis, the error
covariance with the QMM is

P## D .	0I3 � B0/�1M.	0I3 � B0/�1 (5.110)

where

M �
NX
i;D1

a2i �
2
i Œb

true
i ��Œbtrue

i ��T D
NX
i;D1

a2i �
2
i

�
I3 � btrue

i .btrue
i /T

�
(5.111)

It is interesting to note that using the nonsingular, but nonphysical, measurement
covariance matrices Rri D �2ri I3 and Rbi D �2bi I3 yields the same result.

If we choose the weights to be proportional to the inverses of the measurement
variances,

ai D c=�2i (5.112)

for some constant c, we get the very simple result

M D c2F; 	0I3 � B0 D cF; and P## D F �1 (5.113)

where

F �
NX
iD1

��2
i

�
I3 � btrue

i .btrue
i /T

�
(5.114)

We will show in Sect. 5.6.1 that this choice of weights in Wahba’s loss function also
results in the best estimate.7 Note that the covariance is independent of the scaling

7We can show that Eq. (5.112) gives an extremum ofP## by differentiating Eq. (5.110) with respect
to any ak , then substituting Eqs. (5.112) and (5.113) after differentiating, which gives zero for the
derivative.
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parameter c. Most recent work sets c D 1, so the weights are equal to the inverse
variances, but earlier treatments often set c D �2tot, where

�tot �
 

NX
iD1

��2
i

!�1=2
(5.115)

so that the weights sum to unity.
Equation (5.114) has a nice physical interpretation. The covariance matrix is

a measure of the uncertainty, or the lack of complete information, in computing
the estimate. The inverse of the covariance matrix, F , is therefore a measure of the
information contributing to the estimate. Each term in the sum in Eq. (5.114) can be
interpreted as the information contributed by a single vector measurement. For an
efficient estimator F is equivalent to the Fisher Information Matrix. See Sect. 12.3.4
for more details.

In practice, we would like to compute an estimate of the covariance without
requiring knowledge of the true body frame vectors. We could simply use the
measured body frame vectors bi in Eq. (5.114), but it is better to use the predicted
body frame vectors OAri , which usually have smaller errors. We can avoid the need
to perform the additional summation of Eq. (5.114) by using the B matrix, which
must be computed as part of the attitude estimation. Dispensing with the assumption
that the reference frame coincides with the body frame, we see from Eq. (5.113) that
a good estimate of the covariance is

P## D c.	maxI3 � B OAT /�1 (5.116)

We use 	max instead of 	0 in this equation to preserve the important property that the
covariance is infinite if the two largest eigenvalues ofK are equal. Analysis parallel
to that used to derive the FOAM attitude estimate gives the alternative form for the
covariance

P## D c
�
	2max�kBk2F

	
I3 C 2BBT

	max
�
	2max�kBk2F

	 � 2 detB
(5.117)

which avoids a matrix inversion.

5.5.3 Covariance with Two Observations

The covariance for the case of two observations can be found by substituting
Eqs. (5.75a)–(5.75c) and (5.76) into Eq. (5.117). We also assume for simplicity that
r1 � r2 D b1 � b2, which leads to kb1 � b2k D kr1 � r2k and 	max D a1C a2. Putting
all this together gives

P## D c

a1 C a2
�
I3 C a21b1b

T
1 C a22b2bT2 C a1a2.b1 � b2/.b1bT2 C b2bT1 /

a1a2kb1 � b2k2
�

(5.118)
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We now use the expansion of the identity matrix in terms of the orthonormal triad
of Sect. 5.1:

I3 D w1wT
1 C w2wT

2 C w3wT
3

D b1bT1 C b2bT2 � .b1 � b2/.b1bT2 C b2bT1 /
kb1 � b2k2 C b�bT� (5.119)

and substitute ai D c=�2i to get the final result

P## D �22b1bT1 C �21b2bT2
kb1 � b2k2 C �21 �

2
2

�21 C �22
b�bT� (5.120)

It is easy to see with the help of Eq. (5.119) that this is the inverse of Eq. (5.114) if
measurement errors are negligible.

The covariance of the TRIAD estimate is found as a limiting case of the
covariance of the Wahba estimate. We have seen that the TRIAD estimate is the
limiting case of Eq. (5.78) for a1 
 a2, or equivalently for �2 
 �1. Taking this
limit of Eq. (5.120) gives

PTRIAD D �22b1bT1 C �21b2bT2
kb1 � b2k2 C �21b�bT� (5.121)

We noted that the Wahba and TRIAD attitude estimates only differ by a rotation
around b�, so it is not surprising that the only difference in the covariance of the
two estimates is in that direction. The TRIAD information matrix is the inverse of
the covariance, namely

FTRIAD D ��2
1 .I3 � b1bT1 /C ��2

2 .b2 � b�/.b2 � b�/T (5.122)

The first vector measurement contributes the same information to the TRIAD
estimate as to the Wahba estimate, two components perpendicular to b1; but
the second vector measurement contributes only one component of information,
perpendicular to both b2 and b�, to the TRIAD estimate. This derivation of the
TRIAD covariance and information matrices is somewhat heuristic, but a more
rigorous analysis gives the same result [32, 35].

5.6 MLE for Attitude Determination

In this section maximum likelihood estimation (MLE) for the attitude determination
problem is studied. The treatment in Sect. 12.3.4 requires the measurement covari-
ance matrix R to be nonsingular, as will usually be the case if the measurement
vector y contains actual measurements. Considering a star tracker, for example, the
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actual measurements are the horizontal and vertical positions of the centroids of the
star images in the tracker’s field of view.8 The measurement covariance matrix for
these measurements is nonsingular, but it is not particularly simple in the general
case [3].

Here we want to focus on modeling the measurements as unit vectors, which
leads to the elegant and useful estimation methods based on Wahba’s loss function.
An apparent difficulty with this approach is that the measurement covariance matrix
of the QMM is singular, as shown in Eq. (5.107). Shuster has shown how to define a
conditional pdf for vector measurements that overcomes this problem [29], and we
will follow his approach.

We first assume that no errors exist in the reference vectors, and will relax this
assumption later. In this case, the conditional pdf for a unit-vector measurement
bi is

p.bi jAtrue; rtrue
i / D Nbi exp

 
� 1

2�2bi

kbi � Atruertrue
i k2

!
(5.123)

This pdf is defined over the unit sphere i.e. for bi that satisfies kbik D 1. In this pdf,
the single parameter �2bi takes the place of the measurement covariance matrix, so
this models measurement errors with a high degree of symmetry. In fact, the errors
in this model are as symmetric as possible consistent with the unit vector constraint
on the measurements. We will show that this model is equivalent to the QMM to a
very good approximation.

The normalization coefficient Nbi must be specified so that the total probability is
unity. To compute the normalization and other integrals of interest, we parameterize
bi as bi D Atruertrue

i cos � C u sin � cos�C v sin � sin�, where u and v are two unit
vectors perpendicular to Atruertrue

i and to each other. The area element on the unit
sphere is sin � d� d� D d� d�, where � � 1 � cos � . Then the normalization
constant is given by

Nbi D
�Z 2

0

Z 2

0

exp.��=�2bi / d� d�
��1
D
h
2�2bi


1 � e�2=�2bi

�i�1
(5.124)

The exponential term can be neglected even for extremely large errors, reflecting
the fact that the pdf becomes extremely small over most of the unit sphere. For

example, if �i is 10ı, or 0.175 rad, then e�2=�2bi D 3 � 10�29. Neglecting the
exponential term is equivalent to taking the upper limit of the � integral to be infinite,
an approximation we will employ in the next paragraph.

8The really basic measurements are the electron counts in the individual pixels of the star tracker’s
focal plane, but these are invariably reduced to centroids before being communicated to the attitude
control system.
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It is interesting to see how the unit vector pdf of Eq. (5.123) is related to the
QMM. First, with btrue

i � Atruertrue
i we see that

Efbi � btrue
i g �

1

2�2bi

Z 2

0

Z 1

0

.��/ exp.��=�2bi / d� d� btrue
i � ��2bibtrue

i

(5.125)

because the integral over � gives zero components along u and v. This shows

that Eq. (5.108) holds in the approximation of ignoring e�2=�2bi . Now we compute
Ef.bi � btrue

i /.bi � btrue
i /T g. The integrals involving an odd power of cos� or

sin� will vanish in the integration over �, and the integrals over � of cos2 � and
sin2 � both give  . We also note that sin2 � D 2� � �2 and u uT C v vT D
I3 � btrue

i .btrue
i /T , so

Ef.bi � btrue
i /.bi � btrue

i /T g � ��2
bi

Z 1

0

� exp.��=�2bi / d�
�
I3 � btrue

i .btrue
i /T

�

� 1
2
��2
bi

Z 1

0

�2 exp.��=�2bi / d�
�
I3 � 3btrue

i .btrue
i /T

�

� �2bi
�
I3 � btrue

i .btrue
i /T

� � �4bi
�
I3 � 3btrue

i .btrue
i /T

�
(5.126)

The first term is the covariance of the QMM, Eq. (5.107b). The second term is a
small correction, much larger than the neglected exponential terms but only 3 % for
measurement errors as large as 10ı. It is interesting to note that this term has zero
trace.

The likelihood of a set of N statistically independent measurements is

`.b1; : : : ; bN jAtrue; rtrue
i / D

NY
iD1

Nbi exp

 
� 1

2�2bi

kbi � Atruertrue
i k2

!
(5.127)

Maximizing this likelihood is equivalent to minimizing the negative log-likelihood,
which is given by

� ln ` D
NX
iD1

 
1

2�2bi

kbi � Atruertrue
i k2 � ln Nbi

!
(5.128)

The data-dependent portion of the negative log-likelihood, i.e. the part exclusive
of the ln Nbi terms, is Wahba’s loss function with the weights chosen according to
Eq. (5.112), which establishes that Wahba’s problem is equivalent to MLE with this
choice of weights.

The MLE analysis up to this point has assumed that the reference vectors
are perfectly known. This is never the case, although the reference vectors often
have much smaller uncertainties than the body frame vectors. We can generalize
the analysis by assuming that the reference vectors have a conditional pdf over the
unit sphere of the form
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p.ri jrtrue
i / D Nri exp

 
� 1

2�2ri
kri � rtrue

i k2
!

(5.129)

With the reasonable assumption of statistical independence of the reference vector
errors and the errors in the body frame measurements, the likelihood of the reference
and body frame vectors is

`.b1; : : : ; bN ; r1; : : : ; rN jAtrue; rtrue
i / D

NY
iD1

NbiNri

� exp

 
� 1

2�2bi

kbi � Atruertrue
i k2 �

1

2�2ri
kri � rtrue

i k2
!

(5.130)

and the negative log-likelihood function is

� ln ` D
NX
iD1

"
1

2�2bi

kbi � Atruertrue
i k2 C

1

2�2ri
kri � rtrue

i k2 � ln.NbiNri /

#

D
NX
iD1

n
��2
bi
C ��2

ri
� ���2

bi
.Atrue/T bi C ��2

ri
ri
�T

rtrue
i � ln.NbiNri /

o

(5.131)

We have to use our error-corrupted reference vectors and body frame vectors to find
a maximum likelihood estimate of both the attitude matrix Atrue and each of the
true reference vectors rtrue

i . It is clear that we minimize the negative log-likelihood
function with respect to the true reference vectors by taking rtrue

i to be the unit vector
in the direction of ��2

bi
.Atrue/T bi C ��2

ri
ri , i.e.

rtrue
i D

��2
bi
.Atrue/T bi C ��2

ri
ri

.��4
bi
C ��4

ri
C 2��2

bi
��2
ri

bTi Atrue ri /1=2
(5.132)

This is exactly what we would expect, a weighted average of the estimates computed
from the error-corrupted reference and body frame vectors. This estimate involves
the as-yet-unknown attitude matrix. However, inserting this estimate of rtrue

i into
Eq. (5.131) gives the effective negative log-likelihood function for the attitude

� ln ` D
NX
iD1

�
��2
bi
C ��2

ri
� .��4

bi
C ��4

ri
C 2��2

bi
��2
ri

bTi A
true ri /1=2� ln.NbiNri /

�

(5.133)

This does not look like Wahba’s loss function. However, we can write

��4
bi
C ��4

ri
C 2��2

bi
��2
ri

bTi A
true ri D .��2

bi
C ��2

ri
/2 � 2��2

bi
��2
ri
.1 � bTi A

true ri /

D .��2
bi
C ��2

ri
/2 � ��2

bi
��2
ri
kbi � Atrue rik2

(5.134)
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It is always true that kbi � Atrue rik � �bi �ri .�
�2
bi
C ��2

ri
/ D �bi =�ri C �ri =�bi ,

because the right side of this inequality is never smaller than 2 and the left side is
on the order of the �2 by Eq. (5.125). Thus expanding the square root in Eq. (5.133)
as a Taylor series and retaining only the first two terms gives the useful expression

Œ.��2
bi
C ��2

ri
/2 � ��2

bi
��2
ri
kbi � Atrue rik2�1=2

� .��2
bi
C ��2

ri
/

2
641 � kbi � Atrue rik2

2�2bi �
2
ri


��2
bi
C ��2

ri

�2

3
75 (5.135)

and thus

� ln ` �
NX
iD1

�
1

2�2i
kbi � Atrue rik2 � ln.NbiNri /

�
(5.136)

with �2i D �2bi C �2ri , as in Eq. (5.109). The data-dependent portion of this is just
Wahba’s loss function with an effective measurement variance of �2bi C �2ri .

5.6.1 Fisher Information Matrix for Attitude Determination

To determine the Fisher information matrix using the negative log-likelihood in
Eq. (5.136), we must first decide what to use as the vector that we called xtrue in
Sect. 12.3.4. The components of the attitude matrix are not appropriate, because they
are constrained by the orthogonality requirement. We know that three parameters
provide a minimal representation of a rotation, so we use the three incremental error
angles as defined in Eq. (2.123). Thus we replace Atrue by

Atrue ! exp.�Œı#��/Atrue � .I3 � Œı#��/ Atrue (5.137)

where ı# is the vector of error angles. Substituting Eq. (5.137) into Eq. (5.136) and
inserting the true values for bi and ri gives

� ln ` �
NX
iD1

�
1

2�2i
kŒı#�� Atruertrue

i k2 � ln.NbiNri /

�

�
NX
iD1

�
1

2�2i
ı#T Œbtrue

i ��T Œbtrue
i ��ı# � ln.NbiNri /

�
(5.138)

because btrue
i D Atruertrue

i . This approximate expression can be considered as exact
for the purpose of computing the Fisher information matrix, because the higher
order terms neglected in Eq. (5.135) are of third and higher order in ı# and vanish
when computing the information matrix.
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Now the Fisher information matrix is given by

F D �@2.ln `/=Œ.@ı#/ .@ı#T /�ˇ̌
ı#D0 D

NX
iD1

��2
i Œbtrue

i ��T Œbtrue
i ��

D
NX
iD1

��2
i

�
I3 � btrue

i .btrue
i /T

�
(5.139)

remembering that btrue
i is a unit vector. Comparing this result to Eq. (5.114) shows

that any solution that minimizes Wahba’s problem leads to an efficient estimator, to
within first-order, since P## D F �1.

An analysis of the observable attitude axes using the Fisher information matrix is
shown in [8], which is repeated here. This analysis is shown for one and two vector
observations. For observation of a single vector the Fisher information matrix is
given by

F D ��2 �I3 � btrue.btrue/T
�

(5.140)

An eigenvalue/eigenvector decomposition can be useful to assess the observability
of this system. Since F is a symmetric positive semi-definite matrix, then all
of its eigenvalues are greater than or equal to zero. Furthermore, the matrix of
eigenvectors is orthogonal, which can be used to define a coordinate system. The
eigenvalues of this matrix are given by 	1 D 0 and 	2;3 D ��2. This indicates
that rotations about one of the eigenvectors are not observable. The eigenvector
associated with the zero eigenvalue is along btrue. Therefore, rotations about the
body vector are unknown, which intuitively makes sense. The other observable axes
are perpendicular to this unobservable axis, which also intuitively makes sense.

A more interesting case involves two vector observations. The information matrix
for this case is given by

F D ��2
1

�
I3 � btrue

1 .btrue
1 /T

�C ��2
2

�
I3 � btrue

2 .btrue
2 /T

�
(5.141)

If two non-collinear vector observations exist, then the system is fully observable
and no zero eigenvalues of F will exist. The maximum eigenvalue of F can be
shown to be given by

	max D ��2
1 C ��2

2 (5.142)

Factoring this eigenvalue out of the characteristic equation, det.	I3�F / D 0, yields
the following form for the remaining eigenvalues:

	2 � 	max	C ��2
1 ��2

2 kbtrue
1 � btrue

2 k2 D 0 (5.143)

Therefore, the intermediate and minimum eigenvalues are given by
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	int D 	max.1C �/
2

(5.144a)

	min D 	max.1 � �/
2

(5.144b)

where

� D
�
1 � 4kb

true
1 � btrue

2 k2
�21 �

2
2 	

2
max

�1=2
(5.145)

Note that 	max D 	min C 	int. Also note that kbtrue
1 � btrue

2 k D 0 if btrue
1 is collinear

with btrue
2 . Equation (5.144) shows 	min D 0 and thus the inverse of the Fisher

information matrix does not exist, as expected for this case. Also, 	int D 	max for
this case.

The eigenvectors of F are computed by solving 	v D F v for each eigenvalue.
The eigenvector associated with the maximum eigenvalue can be shown to be
given by

vmax D ˙ btrue
1 � btrue

2

kbtrue
1 � btrue

2 k
(5.146)

The sign of this vector is not of consequence since we are only interested in rotations
about this vector. This indicates that the most observable axis is perpendicular to
the plane formed by btrue

1 and btrue
2 , which intuitively makes sense. The remaining

eigenvectors must surely lie in the btrue
1 -btrue

2 plane. To determine the eigenvector
associated with the minimum eigenvalue, we will perform a rotation about the
vmax axis and determine the angle from b1. Using the Euler axis and angle
parameterization in Eq. (2.108) gives

vmin D ˙
˚
.cos#/I3 C .1 � cos#/vmaxvTmax � sin#Œvmax��

�
btrue
1 (5.147)

where # is the angle used to rotate btrue
1 to vmin. Using the fact that vmax is

perpendicular to btrue
1 gives vTmaxbtrue

1 D 0. Therefore, Eq. (5.147) reduces down to

vmin D ˙f.cos#/I3 � sin#Œvmax��g btrue
1 (5.148)

Substituting Eq. (5.148) into 	minvmin D F vmin and using the property of the cross
product matrix leads to the following equation for # :

tan# D aC b
c

(5.149)

where

a � 	min�
�2
1 (5.150a)

b � ��2
1 ��2

2 .btrue
1 /T Œbtrue

2 ��2btrue
1 (5.150b)

c � ��
�2
1 ��2

2 .btrue
1 /T Œbtrue

2 ��2Œbtrue
1 ��2btrue

2

kbtrue
1 � btrue

2 k
(5.150c)
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b1
true

b2
true

vmax

vmin

Fig. 5.1 Observable axes
with two vector observations

Equation (5.149) can now be solved for # , which can be used to determine vmin from
Eqs. (5.146) and (5.148). The intermediate axis is simply given by the cross product
of vmax and vmin:

vint D ˙vmax � vmin (5.151)

A plot of the minimum and intermediate axes is shown in Fig. 5.1 for the case when
the angle between btrue

1 and btrue
2 is less than 90ı. Intuitively, this analysis makes

sense since we expect that the least determined axis, vmin, is somewhere between
btrue
1 and btrue

2 if these vector observations are less than 90ı apart.
The previous analysis greatly simplifies if the reference vectors are unit vectors

and the observation variances are equal, so that �21 D �22 � �2. These assumptions
are valid for a single field-of-view star camera. The eigenvalues are now given by

	max D 2��2 (5.152a)

	int D ��2.1C j.btrue
1 /T b2j/ (5.152b)

	min D ��2.1 � j.btrue
1 /T b2j/ (5.152c)

The eigenvectors are now given by

vmax D ˙ btrue
1 � btrue

2

kbtrue
1 � btrue

2 k
(5.153a)

vint D ˙ btrue
1 � signŒ.btrue

1 /T btrue
2 �btrue

2

kbtrue
1 � signŒ.btrue

1 /T btrue
2 �btrue

2 k
(5.153b)

vmin D ˙ btrue
1 C signŒ.btrue

1 /T btrue
2 �btrue

2

kbtrue
1 C signŒ.btrue

1 /T btrue
2 �btrue

2 k
(5.153c)

where signŒ.btrue
1 /T btrue

2 � is used to ensure that the proper direction of the
eigenvectors is determined when the angle between btrue

1 and btrue
2 is greater than 90ı.
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If this angle is less than 90ı then vmin is the bisector of btrue
1 and btrue

2 . Intuitively
this makes sense since we expect rotations perpendicular to the bisector of the two
vector observations to be more observable than rotations about the bisector (again
assuming that the vector observations are within 90ı of each other).

The analysis presented in this section is extremely useful for the visualization
of the observability of the determined attitude. Closed-form solutions for special
cases have been presented here. Still, in general, the eigenvalues and eigenvectors of
the information matrix can be used to analyze the observability for cases involving
multiple observations.

5.7 Induced Attitude Errors from Orbit Errors

Missions sometime require accurate attitude knowledge for Earth-pointing space-
craft. As discussed in Chap. 1 this is true for the GOES series of spacecraft.
A natural attitude sensor selection for Earth-pointing spacecraft is a horizon sensor
because it provides an attitude estimate directly with respect to an Earth-centric
frame. However, as is the case for GOES, a horizon sensor may not meet the
desired attitude knowledge requirement. For GOES a star tracker was selected
to provide higher attitude accuracy. But a star tracker provides an estimate with
respect to an inertial frame. The conversion to an Earth-centric frame, such as
the LVLH described in Sect. 2.6.4, requires an attitude rotation from an inertial
frame to an Earth-centric frame. For the LVLH frame the required attitude matrix to
accomplish this rotation is given by the transpose of the matrix in Eq. (2.79). Since
this matrix depends on position and velocity, then these quantities will contribute
to the overall attitude errors. This section derives the attitude error-covariance with
additive position and velocity orbit errors in Eq. (2.79). Since the orbit determination
errors are uncorrelated with the attitude sensor errors, then the overall attitude error
is the sum of the sensor and orbit errors. In this way the additional errors induced by
the coupling of position and velocity to attitude can be accounted for in the overall
attitude knowledge budget.

First, the true variables must be defined from Eq. (2.78):

otrue
3I D �rtrue

I =krtrue
I k � �gtrue

3 rtrue
I (5.154a)

otrue
2I D �.rtrue

I � vtrue
I /=krtrue

I � vtrue
I k � �gtrue

2 .rtrue
I � vtrue

I / (5.154b)

otrue
1I D gtrue

2 gtrue
3 Œ krtrue

I k2vtrue
I � .rtrue

I � vtrue
I /rtrue

I � (5.154c)

Adding an error to position in o3I simply gives

o3I D � rtrue
I C�rI
krtrue
I C�rIk (5.155)
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where rtrue
I is the true position and �rI is its associated error, which is assumed

to be a zero-mean Gaussian noise process. In this section it is assumed that the
signal-to-noise ratio is large enough so that second-order and higher error terms are
negligible. The denominator in Eq. (5.155) is thus approximated by

krtrue
I C�rIk D .krtrue

I k2 C 2 rtrue
I ��rI C k�rIk2/1=2

� .krtrue
I k2 C 2 rtrue

I ��rI /1=2
(5.156)

Next the following first-order binomial expansion is used:

.x C�x/n � xn C nxn�1�x; �x << x (5.157)

Using Eq. (5.157) with x � krtrue
I k2, �x � 2 rtrue

I ��rI and n D �1=2 leads to

o3I � �.rtrue
I C�rI /

�krtrue
I k�1 � krtrue

I k�3rtrue
I ��rI

	
(5.158)

Ignoring second-order terms gives

o3I � otrue
3I C

1

krtrue
I k3

�
.rtrue
I /.rtrue

I /T � krtrue
I k2I3

�
�rI

D otrue
3I C

1

krtrue
I k3

Œrtrue
I ��2�rI

(5.159)

Therefore the error in o3I , denoted by �o3I , is given by

�o3I D 1

krtrue
I k3

Œrtrue
I ��2�rI (5.160)

In a similar fashion the error in o2I , denoted by �o2I , can by shown to be given by
(which is left as an exercise to the reader)

�o2I D 1

krtrue
I � vtrue

I k3
Œ.rtrue

I � vtrue
I /��2Œ.rtrue

I ��vI / � .vtrue
I ��rI /� (5.161)

where vtrue
I is the true velocity and �vI is its associated error, which is assumed to

be a zero-mean Gaussian noise process. The error in o1I is more complicated than
the other ones, but fortunately this term is not required in the analysis.

The attitude matrix with errors can now be written as

AIO D Atrue
IO C�AIO (5.162)

where

AIO � Œo1I o2I o3I � (5.163a)

Atrue
IO � Œotrue

1I otrue
2I otrue

3I � (5.163b)

�AIO � Œ�o1I �o2I �o3I � (5.163c)
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We wish to use a multiplicative attitude error in the orbit frame, which is given by
Eq. (2.180) as

ıAIO D .Atrue
IO /

T AIO � I3 � Œı#�� (5.164)

Substituting Eq. (5.162) into Eq. (5.164) and cancelling the I3 terms gives

� Œı#�� D .Atrue
IO /

T�AIO D
2
4

0 otrue
1I ��o2I otrue

1I ��o3I
otrue
2I ��o1I 0 otrue

2I ��o3I
otrue
3I ��o1I otrue

3I ��o2I 0

3
5 (5.165)

This is very similar to the derivation of Eq. (3.174), and as in that case we choose
the easier dot products to evaluate. After some algebra that is left to the reader as an
exercise, this leads to

ı# D
2
4

otrue
2I ��o3I
�otrue

1I ��o3I
otrue
1I ��o2I

3
5 D O

�
�rI
�vI

�
(5.166)

where

O �

2
664

gtrue
3 .otrue

2I /
T 0T3

�gtrue
3 .otrue

1I /
T 0T3

�gtrue
2 gtrue

3 .rtrue
I � vtrue

I /.otrue
2I /

T gtrue
2 gtrue

3 krtrue
I k2.otrue

2I /
T

3
775 (5.167)

The position and velocity error-covariance matrix is defined by

Porbit D E

�
�rI
�vI

� �
�rTI �vTI

��
(5.168)

which is given by the orbit determination system. Therefore, the induced attitude
error-covariance is given by

Porbit D E
˚
.ı#/ .ı#/T

� D O Porbit O
T (5.169)

Note thatPorbit is a function of the true position and velocity variables in O , but these
can be replaced by their respective estimates from the orbit determination system in
practice.

5.8 TRMM Attitude Determination

The Tropical Rainfall Measuring Mission (TRMM) spacecraft was launched on
November 27, 1997 from the Tanegashima Space Center in Tanegashima, Japan.
The main objectives of this mission include: (1) to obtain multi-year measurements
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Fig. 5.2 TRMM spacecraft

of tropical and subtropical rainfall, (2) to understand how interactions between the
sea, air, and land masses produce changes in global rainfall and climate, and (3)
to help improve the modeling of tropical rainfall processes and their influence on
global circulation.

TRMM’s nominal orbit altitude was 350 km, until raised to 402 km to prolong
mission life by reducing the fuel expenditure used to compensate for atmospheric
drag [1]. The spacecraft is three-axis stabilized with an orbit inclination of 35ı.
A diagram of the TRMM spacecraft is shown in Fig. 5.2. The Ob1 axis is parallel to
the orbital velocity direction, the Ob2 axis is parallel to the negative of the orbital
momentum vector, and the Ob3 axis points in the nadir direction. The nominal
mission mode requires a rotation once per orbit about the spacecraft’s Ob2 axis while
holding the remaining axis rotations near zero. Thus, the LVLH frame described in
Sect. 2.6.4 can be used to compute the desired attitude matrix from the spacecraft’s
position/velocity vector in order to maintain an Earth-pointing configuration.

The attitude determination hardware consists of an Earth Sensor Assembly
(ESA), Digital Sun Sensors (DSSs), Coarse Sun Sensors (CSSs), a Three-Axis
Magnetometer (TAM), and rate-integrating gyroscopes (RIGs). The allotted attitude
knowledge accuracy of 0.18ı per axis was achieved by using the ESA for pitch
and roll and the RIGs, updated twice per orbit by DSS measurements, for yaw.
As was discussed in Chap. 1, potential problems with the ESA resulted in an effort to
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develop alternative attitude determination methods using only the DSSs, TAM, and
RIGs [1, 7]. This effort led to several simple algorithms, one of which is used as an
onboard backup to the full-up Kalman filter employed for the TRMM contingency
mode. Simulations of this mode, which provides accuracies comparable to those
given by the Kalman filter and by the ESA-based system, are presented here.

The true magnetic field reference is modeled using a 10th-order International
Geomagnetic Reference Field (IGRF) model, which is described in Sect. 11.1 of
Chap. 11. In order to simulate magnetic field modeling error, a 6th order IGRF is
used to develop measurements. TAM sensor noise is modeled by a Gaussian white-
noise process with a mean of zero and a standard deviation of 50 nT. The two DSSs
each have a field of view of about 50ı� 50ı. The body to sensor transformations for
each sensor is given by

A
DSS1
body D

2
4
�0:5736 0 �0:8192
0:4096 0:8666 �0:2868
0:7094 �0:5 �0:4967

3
5 (5.170a)

A
DSS2
body D

2
4
�0:5736 0 0:8192

�0:4096 0:8666 �0:2868
�0:7094 �0:5 �0:4967

3
5 (5.170b)

The two DSSs combine to provide Sun measurements for about 2/3 of a complete
orbit. The DSS sensor noise is also modeled by a Gaussian white-noise process
with a mean of zero and a standard deviation of 0.05ı. The gyro measurements are
simulated using Eqs. (4.31) and (4.32) of Sect. 4.7.1, with �u D

p
10�10�10 rad/s3=2

and �v D
p
10 � 10�7 rad/s1=2. The initial bias for each axis is given by 0.1 deg/h.

All sensors are sampled at 10-s intervals. Note that in general gyros are typically
sampled at higher frequencies than other attitude sensors in order to provide rate
information for other control aspects, such as spacecraft jitter.

Attitude results using the uncorrupted TAM, i.e. using the 10th-order model to
generate the truth and the measurements, with the two DSSs are shown in Fig. 5.3a.
The actual errors are plotted with their 3� bounds, three times the square roots of
the diagonal elements of the covariance matrix given by Eq. (5.120). Gaps are given
when both of the DSSs are unavailable. The large values in the 3� bounds are due
to the vectors becoming more co-aligned, i.e. the angle between the magnetic field
vector and Sun vector is small, thereby reducing usable information in the attitude
determination solution. The computed 3� bounds provide an accurate measure to
quantify the actual errors. Results using the corrupted TAM, i.e. using the 10th-order
model to generate the truth and the 6th-order model to generate the measurements,
with the two DSSs are shown in Fig. 5.3b. Clearly the errors are now larger but they
are within the typical accuracy provided by a TAM/DSS sensor suite for attitude
determination on actual spacecraft.
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Fig. 5.3 TRMM attitude determination results. (a) Uncorrupted TAM results. (b) Corrupted TAM
results. (c) Filter gain. (d) Filtered results

The accuracy can be improved by employing a simple first-order filter approach
using the estimated quaternion together with gyro measurements [7]. Furthermore,
the gyro can be used to propagate an attitude solution when no DSS measurements
are available. The first-order filter is given by

OqC
k D .1 � ˛/ Oq�

k C ˛ Qqk (5.171a)

Oq�
kC1 D exp

�
1

2
Œ Q!k˝��t

�
OqC
k (5.171b)

D
�

cos

�
1

2
k Q!kk�t

�
I4 C 1

k Q!kk sin

�
1

2
k Q!kk�t

�
˝. Q!k/

�
OqC
k (5.171c)

where Qqk is the quaternion determined from the TAM/DSS attitude determination
system, Oq�

k is the propagated estimate, OqC
k is the updated estimated, Q!k is the vector

of gyro measurements, ˛ is a scalar gain between 0 and 1, and �t is the sampling
interval in the gyro. Using an initial estimate, which is typically Qqk , Eq. (5.171c)
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is used to propagate the quaternion until the next Qqk is available, at which point
Eq. (5.171a) is used to update the propagated estimate. The gain ˛ is typically
chosen to be constant [8], but a more judicious approach can be developed. Here,
the following equation is used:

˛ D kr1 � r2k2˛0 (5.172)

where r1 and r2 are the normalized Sun and magnetic field reference vectors, and ˛0
is a constant. The filter gain in Eq. (5.172) is automatically adjusted to accommodate
periods of vector co-alignment, i.e. as the vectors become co-aligned the gain
approaches 0. Also, ˛0 is set to zero when no solution from the TAM/DSS attitude
determination system is possible.

The first-order filter is essentially an “additive” approach because the updated
quaternion is a weighted sum of the propagated quaternion and TAM/DSS deter-
mined quaternion. As will be discussed in Chap. 6, an additive approach for the
quaternion update does not result in an estimate that maintains quaternion normal-
ization. To investigate how the additive update affects quaternion normalization,
Eq. (5.171a) may be rewritten as

OqC
k D Oq�

k ˝
˚
Iq C ˛

�
. Oq�
k /

�1 ˝ Qqk � Iq
��

(5.173)

where Iq is the identity quaternion. If the propagated quaternion is close to the
TAM/DSS determined quaternion, then Eq. (5.173) can be approximated accu-
rately by

OqC
k � Oq�

k ˝
�
1
2
˛ ı#

1

�
(5.174)

where ı# is the angle vector used to form the rotation matrix between Oq�
k and

Qqk . Therefore, since ˛ is between 0 and 1, then normalization is maintained to
within first order. For numerical precision, the quaternion estimates are explicitly
normalized after the update process.

The simple filter is now applied to the TRMM example. Trial and error found
that an initial gain of ˛0 D 0:1 provides good filtered estimates. A higher gain
will produce estimates that are noisier and lower gain will result in estimates that
suffer from greater gyro bias propagation errors. A plot of the filter gain is shown
in Fig. 5.3c. Note that at the 1-h mark the gain becomes small, which is due to the
fact that the Sun and magnetic field vectors are nearly co-aligned at that time. This
forces the estimate to follow the gyro propagation more closely, which results in
smaller estimate errors, as shown in Fig. 5.3d. Also, note that when no TAM/DSS
quaternion estimate is given, the errors are dictated by the gyro bias, which is given
as 0.1 deg/h. For the TRMM mission the attitude drift during these periods is within
the mission specifications.
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5.9 GPS Attitude Determination

GPS attitude determination uses phase differences of GPS signals received by
antennas located at several locations on the spacecraft. Pairs of GPS antennas can be
used to form a set of n � 2 baselines bi in the spacecraft body frame, as illustrated
in Fig. 4.4. The m � 4 unit vector sightlines sj from the user spacecraft to the GPS
satellites can be computed from the GPS position solution, as discussed in Sect. 4.6.
The different path lengths from each GPS satellite to the antennas at the two ends
of each baseline create mn phase differences of the received signals

� true
ij D 2.n�ij C 	�1bTi Asj / (5.175)

where A is the attitude matrix, 	 is the wavelength of the GPS signal, and the
integers n�ij are the number of full wavelength differences of the paths from GPS
satellite j to the two antennas at the ends of baseline i . The latter are referred to
as the integer phase ambiguities, and several algorithms have been proposed to
compute them [6, 10, 28]. We will not discuss these, but assume that they have
successfully solved for the integer ambiguities. We then use the measured phase
differences to compute the normalized measurements

zij � 	.�ij =2 � n�ij / (5.176)

The optimal attitude solution is the attitude matrix minimizing the loss function

LGPS.A/ � 1

2

nX
iD1

mX
jD1

aij .zij � bTi Asj /2 (5.177)

for some weights aij . This is similar to Wahba’s loss function, but is not as easy to
minimize. Solutions can be found with difficulty, however [6].

If we knew the representations of the baseline vectors in the reference frame,
which we denote by ri as in Sect. 5.2, we could use one of the algorithms of that
section to compute the attitude matrix. In view of Eq. (5.1), we compute these as the
ri minimizing the loss function [9]

Li.ri / � 1

2

mX
jD1

aij .zij � rTi sj /2 (5.178)

for i D 1; 2; : : : ; n. The minimization gives

ri D S�1
i

mX
jD1

aij zij sj (5.179)

where

Si �
mX
jD1

aij sj sTj (5.180)



224 5 Static Attitude Determination Methods

These solutions only exist if the matrices Si all have rank three, which requires that
the sightlines sj not be coplanar, as will generally be the case. The computational
burden is reduced if the weights aij are independent of the baseline label i , since
then all the Si will be equal, and only one matrix must to be computed and inverted
for each set of sightlines.

The computational burden would also be reduced if we reversed the roles of
the baselines and sightlines, since the matrix corresponding to Si would depend
on the baselines in the body frame. Since these are constant, the matrix inverse
in the analog of Eq. (5.179) would only need to be computed once, rather than at
each measurement time. This would require at least three non-coplanar baselines,
however, requiring more GPS antennas with unobstructed sightlines.

The final step of this method is to solve Wahba’s problem for the vector sets
frig and fbig; the fact that they are not unit vectors is not important. There
are several options for choosing the weights ai in Wahba’s loss function, but no
choice produces an optimal minimum of the loss function of Eq. (5.177), in general.
The estimates are nearly optimal unless the sightlines are nearly coplanar, though;
and simulations show that the computational advantages of this method do not entail
a significant loss of accuracy [9].

Problems

5.1. A measure for the error between the estimated attitude,A, and the true attitude,
Atrue, is given by

A .Atrue/T D .cos#err/ I3 � sin#errŒe��C .1 � cos#err/e eT

where #err is the error angle of rotation. Show that #err is given by the following
equation:

#err D 2 sin�1 kA .Atrue/T � I3kF =
p
8
�
D 2 sin�1 kA � AtruekF =

p
8
�

where the Frobenius norm is given by Eq. (5.12).

5.2. Consider the following four reference vectors:

r1 D
2
4
0

0

1

3
5 ; r2 D 1p

0:12 C 1

2
4
0

0:1

1

3
5

r3 D 1p
0:12 C 1

2
4

0

�0:1
1

3
5 ; r4 D 1p

0:12 C 1

2
4
0:1

0

1

3
5
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Assume that the true attitude matrix is given by the identity matrix. To generate body
measurements and measurement errors use the QMM in Eq. (5.107b) with the true
attitude, the given ri ’s and �1 D �2 D �3 D �4 D 0:001 � =180 rad. Run 1,000
Monte Carlo runs using Davenport’s method to compute the quaternion. Plot the
small angle errors along with their respected 3� bounds computed from the error-
covariance given by the inverse of the Fisher information matrix in Eq. (5.139).

5.3. In this exercise you will compare Davenport’s method, QUEST, the SVD
method and FOAM for a number of test cases. Let the true attitude be given by

Atrue D
2
4
0:352 0:864 0:360

�0:864 0:152 0:460

0:360 �0:480 0:800

3
5

Consider the following four cases:

a) r1 D Œ1 0 0�T , r2 D Œ0 1 0�T , and �1 D �2 D 0:01 rad.
b) r1 D Œ1 0 0�T , r2 D Œ1 0:01 0�T =kŒ1 0:01 0�T k, and �1 D �2 D 0:01 rad.
c) r1 D Œ1 0 0�T , r2 D Œ1 0:01 0�T =kŒ1 0:01 0�T k, and �1 D �2 D 1� 10�6 rad.
d) r1 D Œ1 0 0�T , r2 D Œ0:96 0:28 0�T =kŒ0:96 0:28 0�T k; �1 D 0:001 rad, and
�2 D 1 � 10�6 rad.

To generate body measurements with errors use the QMM in Eq. (5.107b) with
the true attitude, the given ri ’s and aforementioned sigma values for each case. Run
1,000 Monte Carlo runs using Davenport’s method, QUEST, the SVD method and
FOAM to compute the attitude, A, for each case. Then compute the following error
metric:

#err D 2 sin�1 kA � AtruekF =
p
8
�

Compute the numerical mean and standard deviation of #err for each algorithm and
compare their relative accuracies.

5.4. Suppose that you wish to determine the average quaternion, denoted by qave,
from a set of weighted quaternions given by qi , i D 1; 2 : : : ; N , with weights wi .
Simply summing the weighted set of quaternions and dividing by N has two issues.
First, it does not produce a unit vector in general. Second, changing the sign of any
qi should not change the average, but it is clear that the weighted sum approach does
not have this property. To find an averaged quaternion that overcomes these issues
the following loss function is chosen to be minimized [23]:

J.qave/ D
NX
iD1

wikA.qave/ � A.qi /k2F ; s.t. qTaveqave D 1

where the Frobenius norm is described in Problem 5.1. Show that the solution for
qave can be found by first forming the following matrix:

M �
NX
iD1

wiqiqTi
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and then taking the eigenvector associated with the maximum eigenvalue of M to
obtain qave. For this problem you will use a different solution approach than the one
shown in [23] though. Start with the following relation given from Problem 5.1:
kA.qave/ � A.qi /k2F D 8 sin2.#i=2/, where #i is the angle of rotation of the matrix
ıA.ıq/ � A.qave/A

T .qi /.
Using the eigenvector associated with the maximum eigenvalue of M is equiva-

lent to Davenport’s solution of Wahba’s problem. But the QUEST solution cannot
be used directly using the matrix M . How can this matrix be modified so that the
QUEST solution can be used? Note that the matrix K in the QUEST algorithm is
traceless. Show that your modification does not change the solution for qave.

5.5. Use Eqs. (5.113) and (5.114) to demonstrate the star tracker accuracies for
multiple stars claimed in Sect. 4.2.3. Assume there are five stars with the same error
standard deviation �i D � at

b1 D
2
4
0

0

1

3
5 ; b2 D

2
4
s

0

c

3
5 ; b3 D

2
4
�s
0

c

3
5 ; b4 D

2
4
0

s

c

3
5 ; b5 D

2
4
0

�s
c

3
5

where s � sin � , c � cos � , and where we have omitted the superscript true.
Compute the information matrix and invert it to find the covariance. The square
roots of its diagonal elements are the standard deviations of the attitude errors about
the three axes. You should find that

�x D �y D �p
5 � 2s2 �

�p
Nstars

�z D �

2s
� �p

Nstars

p
4=5 �

The two approximations are both valid for small � , and
p
4=5 � is the RMS angular

distance of the stars from the boresight, given by b1.

5.6. Suppose that you are given unit Sun and magnetic field reference vectors,
denoted by rsun and rmag, respectively, and a body TAM unit-vector observation,
denoted by bmag. The Sun sensor is a “slit” type design that tells only when the Sun
is in a particular slit plane, but not orientation in that plane. So the body Sun unit-
vector, denoted by bsun, is unknown but another unit vector, denoted by vslit, exists
such that bsun � vslit D 0. Assuming that rsun � rmag D bsun � bmag, find bsun from the
given unit vectors. Note this problem is equivalent to finding the intersection of a
cone and a plane with the vertex of the cone constrained to lie in the plane.

5.7. Consider the following true and measured vectors for a star tracker model,
given by Eq. (4.2):

btrue D 1p
1C k� truek2

�
� true

1

�
; b D 1p

1C k�k2
�
�

1

�
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where � true � Œtan2 ˇtrue tan2 ˛true�T and � � Œtan2 ˇ tan2 ˛�T . The measured and
true vectors are related by � D � trueC�� , where�� is a zero-mean Gaussian noise
process with covariance R� . Using the analysis in Sect. 5.7 show that the following
expression is valid to within first-order:

b D btrue � 1p
1C k� truek2 Œb

true��2I3�2 ��

where

I3�2 D
2
4
1 0

0 1

0 0

3
5

The covariance of b is then given by

Rb D 1

1C k� truek2 Œb
true��2I3�2 R� I T3�2Œbtrue��2

Determine R� in terms of � true D Œ� true
1 � true

2 �T so that Rb is exactly equal to the
QMM given by Eq. (5.107b).

5.8. In this exercise noise will be added to both the body and reference vectors.
This can occur when the errors in an assumed star catalog are significant compared
to the sensor errors. Assume that the reference vectors are modeled by

rmodel
i D ztrue

i C�zi
kztrue
i C�zik

where ztrue
i is some true position vector and �zi is a zero-mean Gaussian noise

process with covariance Rzi . Using the analysis in Sect. 5.7 show that the following
expression is valid to within first-order:

rmodel
i D rtrue

i C�ri

where rtrue
i D ztrue

i =kztrue
i k and

�ri D � 1

kztrue
i k

Œrtrue
i ��2�zi

The “measured” vector with errors is related to the true body vector through

ri � .Atrue/T btrue
i C .Atrue/T �bi C�ri
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This vector will be used in the nonlinear least squares solution. Here it is assumed
that �bi and �ri are uncorrelated. Using the QMM for �bi show that the
covariance of .Atrue/T �bi C�ri , denoted by Ri , can be given by

Ri D ��2bi Œrtrue
i ��2 C

1

kztrue
i k2

Œrtrue
i ��2Rzi Œr

true
i ��2

Note that Ri is independent of the attitude matrix. Also, Ri is a singular matrix, but
the rank-one approach of [3] can be employed to overcome this issue. Define the
following matrix:

NRi D Ri C 1

2
tr.Ri /.rtrue

i /.rtrue
i /T

The loss function to be minimized is given by

J D 1

2

NX
i�1
.ri � AT bi /T NR�1

i .ri � AT bi /

Derive the attitude error-covariance.
Note that to determine an optimal solution for the attitude a total least squares

[8] solution must be employed since errors exist both in the body and reference
vectors. However, the nonlinear least squares solution in Example 12.4 can provide
near optimal solutions. The true body vectors are given by

btrue
1 D

2
4
0

0

1

3
5 ; btrue

2 D
2
4

0

0:1p
1 � 0:12

3
5

Note that the angle between these vectors is 5.74ı. The MRP vector will be
estimated for the attitude, as shown in Example 12.4. The true MRP and associated
attitude matrix are given by

ptrue D

2
664

1

1Cp2
0

0

3
775 ; A.ptrue/ D

2
4
1 0 0

0 0 1

0 �1 0

3
5

Assume that kztrue
1 k D 30 and kztrue

2 k D 50. To generate body measurements use the
QMM in Eq. (5.107b) with �bi D 0:001 deg for i D 1; 2. The covariances for Rz1
and Rz1 are equal, denoted by Rz, which is given by

Rz D
2
4
7 � 10�6 7 � 10�7 1 � 10�5
7 � 10�7 3 � 10�5 �5 � 10�6
1 � 10�5 �5 � 10�6 2 � 10�5

3
5
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x

y

x

y

Fig. 5.4 Ellipse with rotation

Using the approach outlined in Example 12.4 create synthetic measurements for
both the body and reference vectors. Next, determine the estimated MRP using
the estimate model Ori D AT . Op/bi . Perform 1,000 Monte Carlo runs and show
that the attitude errors are bounded from the 3� bounds computed from the derived
attitude error-covariance.

5.9. A problem that is closely related to the attitude determination problem involves
determining ellipse parameters from measured data. Figure 5.4 depicts a general
ellipse rotated by an angle � . The basic equation of an ellipse is given by

.x0 � x0
0/
2

a2
C .y0 � y0

0/
2

b2
D 1

where .x0
0; y

0
0/ denotes the origin of the ellipse and .a; b/ are positive values. The

coordinate transformation follows

x0 D x cos � C y sin �

y0 D �x sin � C y cos �

Show that the ellipse equation can be rewritten as

Ax2 C Bxy C Cy2 CDx CEy C F D 0
Many possibilities exist for this equation. Use the form that produces the following
expression for F :

F D 1

2

�
b

a
x0
0
2 C a

b
y0
0
2 � ab

�

With your determined coefficients show that the following constraint is satisfied:
4AC � B2 D 1.
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Given a set of coefficients A, B , C , D, E, and F , show that the formulas for � ,
a, b, x0

0, and y0
0 are given by

cot.2�/ D A � C
B

a D
r
Q0
A0 ; b D

r
Q0
C 0

x0
0 D �

D0

2A0 ; y0
0 D �

E 0

2C 0

where

A0 D A cos2 � C B sin � cos � C C sin2 �

B 0 D B.cos2 � � sin2 �/C 2.C � A/ sin � cos � D 0
C 0 D A sin2 � � B sin � cos � C C cos2 �

D0 D D cos � CE sin �

E 0 D �D sin � CE cos �

F 0 D F

Q0 � A0
�
D0

2A0

�2
C C 0

�
E 0

2C 0

�2
� F 0

(hint: show that the new variables follow the rotated ellipse equation: A0x02 C
B 0x0y0 C C 0y02 C D0x0 C E 0y0 C F 0 D 0). Also, prove that B 0 D 0. Given the
following quantities:

A D 3:0000; B D �6:9282; C D 7:0000
D D �5:5359; E D 17:5885; F D 4:0000

compute � , x0
0, y

0
0, a and b.

Suppose that a set of measurements for x and y exist, and we form the following
vector of unknown parameters:

xtrue � �Atrue B true C true Dtrue E true F true
�T

Our goal is to determine an estimate of xtrue, denoted by x, from this measured data
set. Show that the minimum norm-squared loss function can be written as

J.x/ D xTHTH x

subject to

xT Z x D 1
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where the i th row of H is given by

Hi D
�
x2i xi yi y

2
i xi yi 1

�

Determine the matrix Z that satisfies the constraint 4AC � B2 D 1. Find the form
for the optimal solution for x using an eigenvalue/eigenvector approach. Note, a
more robust approach involves using a reduced eigenvalue decomposition [16] or a
singular value decomposition approach [14].

Write a computer program for your derived solution and perform a simulation
to test your algorithm. Note that for a given set of x0 values, y0 can be determined
using

y0 D y0
0 ˙ b

r
1 � .x

0 � x0
0/
2

a2

where the ˙ term gives values for the upper and lower half of the ellipse. Use the
computed � , x0

0, y
0
0, a and b from before and pick at least 1,200 samples of x0 and

y0 values that span the entire ellipse. Then convert these to x and y using the inverse
transformation

x D x0 cos � � y0 sin �

y D x0 sin � C y0 cos �

Using your formulated eigenvalue/eigenvector solution compute the optimal solu-
tion for x. Next add noise to x and y using a zero-mean Gaussian white-noise
process with standard deviation given by 0:01 and recompute your solution using
measured values instead of the true ones.

5.10. Derive the expression given in Eq. (5.161). Also, derive the expression given
in Eq. (5.167).

5.11. The loss function in Eq. (5.177) can be derived from a maximum likelihood
approach by assuming that each aij is given by ��1

ij , which is the inverse of the
variance of the assumed zero-mean Gaussian noise on zij . Using this loss function
derive the attitude Fisher information matrix.
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Chapter 6
Filtering for Attitude Estimation and
Calibration

Attitude estimation refers to the process of estimating the current attitude state
of a system from a set of measured observations. The state estimation problem
involves finding the best estimate of the true system state using a dynamic model
and measurements that are both corrupted with random noise of known statistics.
The variables to be estimated are usually collected into a state vector, which
typically includes other variables in addition to the attitude. For example, star tracker
measurements can be combined with a kinematics model, which is propagated using
gyroscopic measurements. However, all gyros have inherent drift, or bias, which
causes inaccuracies in the propagated model. A complementary filter is used to
simultaneously estimate the attitude and gyro drift from the measurements. Filtering
can generally provide a more accurate attitude estimate than static methods because
it incorporates memory of past observations.

This chapter presents the basics of filtering for attitude estimation. It is assumed
that the reader is familiar with the basic ideas of estimation/filtering theory as
reviewed in Chap. 12. Reference [21] includes a survey of early attitude estimation
approaches, and a survey of more modern attitude estimation approaches can be
found in [12]. We begin with general discussions of attitude representations for
Kalman filtering. This is followed by an overview of the equations for an extended
Kalman filter (EKF) using the quaternion to represent the “global” attitude and a
three-component representation of attitude errors. Alternative ways to use gyro data
in attitude filters are then compared, followed by several applications. An EKF is
developed for gyro calibration, which includes estimation of biases, scale factors,
and misalignments, as well as the attitude. A “mission mode” EKF is then shown
that estimates attitude and gyro biases, which is the estimator typically used for
actual onboard applications. We then examine a very useful single-axis covariance
analysis of the accuracy that attitude filters can be expected to provide. Finally,
batch and realtime methods for three-axis magnetometer calibration are developed.
The batch approaches involve a suboptimal linear solution and an optimal nonlinear
least squares solution, and the realtime approach uses an EKF formulation.

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__6,
© Springer Science+Business Media New York 2014
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6.1 Attitude Representations for Kalman Filtering

Section 2.9 presented several different representations of spacecraft attitude, some
of which are more suitable for filtering applications than others. The only represen-
tations that have seen widespread application are three-component representations
and the four-component quaternion representation. We will briefly discuss the
advantages and drawbacks of the different representations, after which we will
concentrate on quaternion-based filters.

6.1.1 Three-Component Representations

Three-component representations are the most natural representations for filtering,
because only three parameters are needed to represent rotations. As was pointed
out in Sect. 2.9, though, all three-parameter representations of the rotation group
have discontinuities or singularities. A filter using a three-dimensional attitude
representation must provide some guarantee of avoiding these singular points.

The earliest Kalman filters for spacecraft attitude estimation used Euler angles,
specifically a roll, pitch, yaw sequence of Tait-Bryan angles, which have a very
intuitive meaning if they do not become too large [13, 14]. This is a very useful
representation if the middle angle of the sequence, which is generally the pitch
angle, stays well away from positive or negative rotations of 90ı. Filters for pitch,
roll, and yaw have been used mostly for Earth-pointing spacecraft, which typically
have small pitch angles. One disadvantage of this representation is that it requires
a fair number of trigonometric function evaluations, but this has become less of an
issue with increasing computing power, especially in onboard computers.

The Gibbs vector or Rodrigues parameter representation has been used in a
Kalman filter [18], but it is not well suited to filtering because of its inability to
represent 180ı rotations. It provides an excellent representation of small attitude
errors, however, as we shall see.

The modified Rodrigues parameters (MRPs) are non-singular for rotations of
less than 360ı, and rotations greater than 180ı can be represented by an MRP in
the shadow set, as discussed in Sect. 2.9.5. This has advanced the use of MRPs in
attitude estimation Kalman filters [10, 19]. The transformation to the shadow set is
made at some angle greater than 180ı to avoid “chattering” between the two MRP
representations if the rotation angle dwells for an extended period in the vicinity
of 180ı. When transforming to the shadow set, it is necessary to transform the
covariance matrix to the new parameters. This transformation is discussed in the
literature.

The rotation vector is very similar to the MRPs in having a singularity for 360ı
rotations. When its magnitude k#k becomes greater than 180ı, the representation
can be switched to an equivalent rotation of magnitude 2 � k#k in the opposite
direction. The rotation vector has no clear advantage over the MRPs for filtering,
though, and has the disadvantage of requiring the evaluation of trigonometric
functions.
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6.1.2 Additive Quaternion Representation

The quaternion has become the representation of choice for attitude estimation
because it is the lowest-dimensional parameterization that is free from singularities.
However, the quaternion must obey its normalization constraint, which can cause
issues in the standard EKF.

The normalization problem is apparent in the Kalman filter update equation1

OqC D Oq� CKŒy � h.Ox�/� (6.1)

where Ox� is the pre-update estimate of the state vector that includes the quaternion
as four of its components. It is clear that OqC and Oq� cannot both be normalized to
unity unless there is some special relation between Oq� and KŒy � h.Ox�/�. No such
relation holds in the general case, so the filter update can spoil the normalization.

There is a deeper problem with quaternion normalization. An unbiased estimator
has the property that the expectation of the estimated value is the true value, as
discussed in Sect. 12.3.2, i.e.

Ef Oqg D qtrue (6.2)

We define the additive quaternion error as the algebraic difference between the true
quaternion and its estimate

�q � qtrue � Oq (6.3)

so

kOqk2 D kqtrue ��qk2 D kqtruek2 � 2�qT qtrue C k�qk2 (6.4)

It follows trivially from Eq. (6.3) that the expectation of�q is zero, as it is for every
unbiased estimator, and the true quaternion is assumed to have unit norm, so the
expectation of this equation is

EfkOqk2g D 1CEfk�qk2g D 1C tr.Pqq/ (6.5)

where Pqq � Ef�q�qT g is the quaternion covariance. Thus we see that an
unbiased estimate of the four-component quaternion must violate the unit norm
constraint.

Suppose that we give up on the requirement that the estimator be unbiased and
develop a biased estimator obeying the unit norm constraint, i.e. an estimator giving
kqtruek D kOqk D 1. We will show that this leads to a different problem. For such an
estimator Eq. (6.4) would give

1See Sect. 12.3.7.1 for a review of the Kalman filter.
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2�qT qtrue D k�qk2 (6.6)

Because the estimator is biased, the covariance is

Pqq D Ef�q�qT g �Ef�qgEf�qT g (6.7)

Then

.qtrue/T Pqq qtrue D Ef.qtrue/T �q�qT qtrueg �Ef.qtrue/T �qgEf�qT qtrueg

D 1

4

h
Efk�qk4g � �Efk�qk2g	2

i
D 1

4

�
Efk�qk4g � tr.Pqq/

2
�

(6.8)

This becomes very small as the attitude errors become small, indicating that the
covariance matrix is ill-conditioned in that limit.2 The ill-conditioning has been
observed in toy models [24], numerical studies [5], and analysis [31]. It is worth
noting that if the norm constraint had been linear, the quaternion covariance would
have been truly singular.

At least four methods have been proposed to deal with these problems within the
framework of additive quaternion filtering, but none is completely satisfactory.

The first method is to renormalize the estimate by brute force

Oq � Efqtrueg=kEfqtruegk (6.9)

If the update KŒy � h.Ox�/� is orthogonal to Oq�, then Eq. (6.1) shows that the
renormalization makes only a second-order correction in the quaternion errors.
In this case brute force normalization is consistent with the EKF, which is a first-
order estimator. If the update is not orthogonal to Oq�, it is difficult to justify brute
force normalization.

The second method is to modify the Kalman filter update equations to enforce
the norm constraint by means of a Lagrange multiplier [42]. These two approaches
both yield biased estimates of the quaternion.

The third method is to give up on enforcing the quaternion norm, and to define
the attitude matrix as

A.q/ D kqk�2 ˚�q24 � kq1W3k2
	
I3 C 2q1W3 qT1W3 � 2q4Œq1W3��

�
(6.10)

This definition is guaranteed to provide an orthogonal attitude matrix. We call
this the ray representation, because any quaternion along a ray through the origin
corresponds to the same attitude matrix. This approach avoids the complications
arising from enforcing the norm constraint, but introduces an unobservable degree of
freedom, the quaternion norm. The result is that one eigenvalue of Pqq is unaffected

2But not singular, as was claimed in [21].
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by measurements and thus retains its initial value, which can cause loss of numerical
precision if the attitude estimates become very accurate. This method has been used
successfully, however [32, 33].

The fourth method is to give up on enforcing the quaternion norm, but to continue
to define the attitude matrix by Eq. (2.125), which is Eq. (6.10) without the factor
of kqk�2. The attitude matrix is not orthogonal in this case. This is a significant
drawback of the method, but the lack of orthogonality gives rise to measurement
residuals resulting in Kalman filter updates that tend to drive the quaternion norm to
unity. This method can lead to an ill-conditioned covariance matrix [24].

6.1.3 Multiplicative Quaternion Representation

The basic idea of the multiplicative EKF (MEKF) is to use the quaternion as the
“global” attitude representation and use a three-component state vector ı# for the
“local” representation of attitude errors. Instead of writing the true quaternion as
the sum of the estimated quaternion and an error quaternion, we write it as the
product of an error quaternion and the estimate

qtrue D ıq.ı#/˝ Oq (6.11)

Note that qtrue, ıq, and Oq are all properly normalized unit quaternions. This idea
was first applied to the Space Precision Attitude Reference System (SPARS) in
1969 [29, 39], was later developed for NASA’s Multimission Modular Spacecraft
(MMS) [27], and has been widely applied to a great number of space missions. The
appearance of ıq on the left of Oq in Eq. (6.11) means that the attitude error vector
is defined in the body reference frame. This is the most widely used form of the
MEKF, but some authors write qtrue D Oq˝ ıq0 in place of Eq. (6.11), defining the
attitude error vector to be in the reference frame [16].

We have written the error vector as ı# , but any of the error representations
discussed in Sect. 2.10 can be used: the rotation vector, two times the vector part
of the quaternion, two times the vector of Rodrigues parameters, four times the
vector of MRPs, or the vector of roll, pitch, and yaw angles. The MEKF updates the
error state

�x �
�
ı#

��

�
(6.12)

where � true D O�C�� is a vector of other variables to be estimated. Thus we have a
conventional EKF that computes an unconstrained and unbiased estimate of�x. The
correctly normalized four-component Oq is not actually part of the EKF, but a reset
operation moves the updates into this global variable to keep the error quaternion
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small and thus far away from any singularities [21, 23]. It is important to note that
the estimate Oq is not defined as an expectation, which is how the MEKF avoids the
pitfalls of Sect. 6.1.2.3

If the vector � has n components, the MEKF covariance is a well-conditioned
.nC 3/�.nC 3/ matrix, while the covariance matrix of a filter estimating the full
quaternion would be .nC4/�.nC4/. The conceptual advantage of this dimensional
reduction, as more truly representing the actual degrees of freedom of the system,
has been debated at length [5, 23, 24, 31, 36, 37], but the computational advantages
are indisputable. Another great advantage of the MEKF is that the covariance of
the attitude error angles has a transparent physical interpretation. The covariance
of estimators using other attitude representations has a less obvious interpretation
unless the attitude matrix is close to the identity matrix.

Equation (6.11) is equivalent to

Atrue D A.qtrue/ D A.ı#/A. Oq/ D A.ı#/ OA (6.13)

This shows that the attitude matrix could also be used as the global representation,
but the quaternion has two advantages. The first is compactness; it only has four
components rather than nine. The second is that if computational errors cause the
quaternion norm to deviate from unity, it is easy to normalize the quaternion by
dividing all its components by its norm. It is not so straightforward to restore the
orthogonality constraint on the attitude matrix if computational errors cause the
constraint to be violated.

6.2 Attitude Estimation

6.2.1 Kalman Filter Formulation

Our attitude filters all use some variant of the MEKF, which proceeds by iteration
of three steps: measurement update, state vector reset, and propagation to the next
measurement time. The measurement update step updates the error state vector.
The reset moves the updated information from the error state to the global attitude
representation and resets the components of the error state to zero. The propagation
step propagates the global variables to the time of the next representation. The error
state variables do not need to be propagated because they are identically zero over
the propagation step. We will now discuss these three steps in more detail.

3Reference [23] writes qtrue D ıq.ı#/ ˝ qref, where qref is a “reference” quaternion, and
derives the propagation and update equations to ensure that Efı#g is only nonzero between the
measurement update and reset. It turns out that qref obeys the same equations as our Oq and is the
best attitude estimate, so the treatment here is mathematically equivalent, although less rigorous.
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6.2.1.1 Measurement Update

The observation model is given by Eq. (12.103), which for attitude estimation is

y D h.qtrue; � true/C v (6.14)

where v is a vector of Gaussian errors with covariance matrixR. The MEKF updates
the error state of Eq. (6.12), not the global state representation Oq and O�, so the
measurement sensitivity matrix is

H.q; �/ D @h
@.�x/

D
�
@h

@.ı#/

@h
@�

�
� �H# H�

�
(6.15)

The alternative representations for ıq.ı#/ are all equivalent to first order in ı# , as
was shown in Sect. 2.10, so we can express the error quaternion to first order in the
error vector as

ıq �
�
ı#=2

1

�
D Iq C 1

2

�
ı#

0

�
(6.16)

Then Eqs. (6.11) and (2.98) give

qtrue �
�

Iq C 1

2

�
ı#

0

��
˝ Oq D OqC 1

2
ı# ˝ Oq D OqC 1

2
�. Oq/ı# (6.17)

It follows that the attitude part of the measurement sensitivity matrix can be
evaluated by using the chain rule

H# D @h
@q

@q
@.ı#/

D 1

2

@h
@q
�. Oq/ (6.18)

An even more convenient form of the measurement sensitivity matrix for the
common case of vector measurements will be derived in Sect. 6.2.2.

Immediately after a reset or propagation, the quantities ı O# and � O� are zero.
If several measurements are processed at one time without an intervening reset,
though, these quantities may have finite values. In order to avoid recalculating
the nonlinear function h. Oq; O�/, we use the first-order Taylor series to compute the
expectation

Efh.qtrue; � true/g � h. Oq; O�/CH. Oq; O�/
"
ı O#
� O�

#
(6.19)

The state update for the kth measurement is then

"
ı O#C

k

� O�C
k

#
D
"
ı O#�

k

� O��
k

#
CKk

(
yk � hk. Oq�

k ;
O��
k / �Hk. Oq�

k ;
O��
k /

"
ı O#�

k

� O��
k

#)
(6.20)
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The Kalman gain computation and covariance update have the standard Kalman
filter forms.

Many modern-day devices, such as star trackers, provide quaternion-out capabil-
ities along with associated error covariances. The MEKF measurement model for
incorporating these quaternion “measurements” can be derived from

qk ˝ Oq�1
k D ıq.ı#k/ (6.21)

where qk is the quaternion measurement and we understand Oqk to be Oq�
k .

Because it is important that the measurement update should agree closely with
the measurement residual computation, the measurement model should use the
same parameterization for ıq.ı#k/ as is used in the reset, rather than a first-
order approximation. The Rodrigues vector parameterization has the advantage that
the observation model is insensitive to the sign ambiguity in the tracker output
quaternion qk . Using this parameterization, the measurement used in the filter and
its predicted value are given by Eqs. (2.136), (2.184), (6.19), and (6.21) as

yk D ı#k D 2 .qk ˝ Oq
�1
k /1W3

.qk ˝ Oq�1
k /4

(6.22a)

hk. Oq�
k ;
O��
k /CHk. Oq�

k ;
O��
k /

"
ı O#�

k

� O��
k

#
D 2 . Oqk ˝ Oq

�1
k /1W3

. Oqk ˝ Oq�1
k /4

C ŒI3 03�n�
"
ı O#�

k

� O��
k

#
D ı O#�

k

(6.22b)

The measurement sensitivity matrix is simply given by Hk D ŒI3 03�n�, and the
measurement covariance matrix, Rk , is a 3�3matrix of attitude measurement error
angles.

Using a quaternion-out approach simplifies the computations in the EKF, but
issues such as estimator consistency need to be considered when using the EKF to
fuse multiple measurement sets. See [7] for more details.

6.2.1.2 Reset

The discrete measurement update assigns finite post-update values to ı O#C
and

� O�C
, but the components of the global state still retain the values Oq� and O��

. A reset
procedure is used to move the update information to a post-update estimate global

state vector OqC and O�C
, while simultaneously resetting ı O# and� O� to zero. The reset

does not change the overall estimate, so the reset must obey

OqC D ıq.03/˝ OqC D ıq.ı O#C
/˝ Oq� (6.23a)

O�C D O�C C 0n D O�� C� O�C
(6.23b)
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After the update, ı#�
k and ��� are reset to zero. Thus the reset moves information

from one part of the estimate to another part. This reset rotates the reference frame
for the attitude covariance, so that we might expect the covariance to be rotated,
even though no new information is added. However, the covariance depends on the
assumed statistics of the measurements, not on the actual measurements. Therefore,
because the update is zero mean, the mean rotation caused by the reset is actually
zero, and so the covariance is in fact not affected by the reset.4

If a reset is done after each measurement update, Eq. (6.20) simplifies to

"
ı O#C

k

� O�C
k

#
D Kk

h
yk � hk. Oq�

k ;
O��
k /
i
�
�
K#k

K�k

� h
yk � hk. Oq�

k ;
O��
k /
i

(6.24)

In this case, the reset of the non-attitude state can be done implicitly as part of the
measurement update, giving

O�C
k D O�

�
k CK�k

h
yk � hk. Oq�

k ;
O��
k /
i

(6.25)

Then only the quaternion has to be reset explicitly. The reset is often delayed for
computational efficiency until all the updates for a set of simultaneous measure-
ments have been performed, though, in which case all the terms in Eq. (6.20) must
be included. It is imperative to perform a reset either implicitly or explicitly before
beginning the time propagation, however, to avoid the necessity of propagating ı#�

k

and ��� between measurements.
The quaternion reset in Eq. (6.23a) is the special feature of the MEKF. This

reset has to preserve the quaternion norm, so an exact unit-norm expression for
the functional dependence of ıq on ı# must be used, not the linear approximation
of Eq. (6.16). Using the Rodrigues parameter vector has the practical advantage that
the reset operation for this parameterization is

OqC D ıq.ı O#C
/˝ Oq� D 1q

1C kı O#C
=2k2

"
ı O#C

=2

1

#
˝ Oq� (6.26)

Using an argument similar to Eq. (6.17), this can be accomplished in two steps:

q� D
"
ı O#C

=2

1

#
˝ Oq� D Oq� C 1

2
�. Oq�/ı O#C

(6.27)

followed by

OqC D q�

kq�k (6.28)

4Not everyone agrees with this statement; see [25] and [34].
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The first step is just the usual linear Kalman update, and the second step is
mathematically equivalent to a brute force normalization. Thus the MEKF using
Rodrigues parameters for the error vector provides a theoretical justification for
the brute force update. It has the additional advantage of completely avoiding the
possibility of accumulated errors in the quaternion norm after many updates.

The Rodrigues parameters also have the conceptual advantage that they map the
rotation group into three-dimensional Euclidean space, with the largest possible
180ı attitude errors mapped to points at infinity. Thus probability distributions
with infinitely long tails, such as Gaussian distributions, make sense in Rodrigues
parameter space.

6.2.1.3 Propagation

An EKF must propagate the expectation and covariance of the state. The MEKF is
unusual in propagating the expectations Oq and O� and the covariance of the error-
state vector in Eq. (6.12). We now derive the expressions needed for propagation,
beginning by differentiating Eq. (6.11):

Pqtrue D ı Pq˝ OqC ıq˝ POq (6.29)

The true and estimated quaternions satisfy the kinematic equations

Pqtrue D 1

2

�
!true

0

�
˝ qtrue (6.30a)

POq D 1

2

� O!
0

�
˝ Oq (6.30b)

where!true and O! are the true and estimated angular rates, respectively. Substituting

these equations and Eq. (6.11) into Eq. (6.29) gives

1

2

�
!true

0

�
˝ ıq˝ Oq D ı Pq˝ OqC 1

2
ıq˝

� O!
0

�
˝ Oq (6.31)

Multiplying on the right by Oq�1 and rearranging terms gives [21]

ı Pq D 1

2

��
!true

0

�
˝ ıq � ıq˝

� O!
0

��
(6.32)

Substituting !true D O!Cı! into Eq. (6.32), where ı! is the error angular velocity,
leads to
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ı Pq D 1

2

�� O!
0

�
˝ ıq � ıq˝

� O!
0

��
C 1

2

�
ı!

0

�
˝ ıq

D �
� O! � ıq1W3

0

�
C 1

2

�
ı!

0

�
˝ .ıq � Iq C Iq/ (6.33)

Note that this is an exact kinematic relationship since no linearizations have been
performed yet. The only nonlinearity in the errors appears in the last term on the
right hand side. Both ı! and ıq � Iq are small, though, so we can ignore their
product in the spirit of the linearized EKF, resulting in

ı Pq D �
� O! � ıq1W3

0

�
C 1

2

�
ı!

0

�
(6.34)

The first three components of this, after substituting Eq. (6.16), are

ı P# D � O! � ı# C ı! (6.35)

and the fourth component is ı Pq4 D 0. Equation (6.35), which is just Eq. (3.48) in
modified notation, is the equation needed to propagate the covariance of the attitude
error-angle covariance. Detailed models will be provided during the presentations
of specific estimators.

The expectation of Eq. (6.35) is

ı
PO# D � O! � ı O# (6.36)

because ı! has zero expectation. This says that if ı O# is zero at the beginning of
a propagation it will remain zero through the propagation, which is equivalent to
saying that ı Oq will be equal to the identity quaternion throughout the propagation.

6.2.1.4 Gyros for Dynamic Model Replacement

Precise angular rate information is required for precise pointing and attitude
maneuvers, and also for filtering noisy attitude sensor data. In principle, this
could be provided by a dynamic model based on the equations in Chap. 3.
Many spacecraft, including virtually all spacecraft with stringent pointing and/or
maneuvering requirements, are provided with accurate gyros, which are the most
crucial of all the attitude sensors. The usual Kalman filter update equations can be
employed to include gyro data in an EKF as measurements.

A great number of attitude filters incorporate gyro information as part of the
dynamic model rather than using than using the gyro information as a Kalman
measurement update. This alternative is often referred to as using gyros in
the dynamic model replacement mode. The reasons for favoring this method
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are twofold. Firstly, gyro information may well be much more accurate than the
available models of rotational dynamics and torques, and inaccurate dynamic
models could actually corrupt the gyro data. The second reason for using gyros in
dynamic replacement mode, which is particularly important for onboard filtering, is
that it requires much less computation. A filter including actual rotational dynamic
models and treating the gyro data as measurements should be more accurate in
theory, but it can be inferior in practice.

The basic idea of dynamic model replacement is to use Eq. (4.31a) or (4.34) to
get the true angular velocity !true in terms of the gyro-sensed rate !. This true
angular rate or its expectation is then substituted directly into Eqs. (6.30) and (6.36).
The details of this method will be presented in the following discussions of specific
filters.

6.2.2 Gyro Calibration Kalman Smoother

Gyros must be calibrated to provide accurate rate measurements. Both sequential
filtering [30] and batch [28] approaches can be used for this calibration. The tradi-
tional attitude on-orbit calibration approach uses the 6-state EKF discussed in the
following section to estimate the current attitude and gyro biases simultaneously
[21]. This filter assumes unvarying alignment of the sensors involved in attitude
estimation. However, sensor misalignment is inevitable and would contribute
to unreliable attitude estimates [38]. More stringent attitude pointing accuracy
requires misalignments to be estimated and incorporated into the attitude estimator.
The importance of proper calibration for use in fault detection or rate derivation has
been noted in several papers [3, 4, 41].

Although several methods exist for gyro calibration, we present a batch pro-
cess based on the smoother shown in Sect. 12.3.7.3. A sequential EKF is first
executed forwards in time and then smoothed estimates are provided by employ-
ing Eq. (12.139) backwards in time with final conditions given by Eq. (12.138).
A calibration model for a 3-axis gyro often comprises a set of 3 biases and a 3�3
scale factor/misalignment matrix containing 3 scale factors and 6 misalignments,
for a total of 12 calibration parameters [30]. The term “bias” implies a constant
offset in the measurements, but in reality this offset actually drifts and is typically
modeled using a random walk process. However, in most cases, this drift occurs
slowly over many orbits. The other calibration parameters can vary as well but
typically not as much as the gyro drift. Here a 15-state model is derived to estimate
the attitude as well as all gyro calibration parameters. Unlike magnetometers, all
gyro calibration procedures require an external attitude or independent rate sensor.
Here it is assumed that star tracker measurements are available. Once the calibration
parameters are determined using the smoother, then a realtime 6-state filter can
be employed for the spacecraft mission mode. Periodic calibration of the gyro is
typically done throughout the spacecraft lifetime, at time intervals dictated by the
required accuracy in the attitude estimates or rate estimates for other purposes, such
as jitter control.
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The 16-component global state vector is made up of the true quaternion, qtrue,
gyro drift biases, ˇtrue, scale factors, strue, and misalignments, ktrue

U and ktrue
L . The

15-component state error vector is

�x.t/ � �ı#T .t/ �ˇT .t/ �sT .t/ �kTU .t/ �kTL.t/
�T

(6.37)

where ı# is the local vector of small attitude errors and the other components are the
errors in the gyro biases, scale factors, and misalignments defined as the difference
between their true and estimated values by �ˇ � ˇtrue � Ǒ , �s � strue � Os, �kU �
ktrue
U � OkU , and �kL � ktrue

L � OkL.
The gyro model is given by Eqs. (4.34) and (4.31b) from Sect. 4.7.1:

! D .I3 C S true/!true C ˇtrue C �v (6.38a)

P̌ true D �u (6.38b)

where the spectral densities of �v and �u are �2v I3 and �2v I3, respectively. The matrix
S true is written as

S true �
2
4
strue
1 ktrue

U1 k
true
U2

ktrue
L1 strue

2 ktrue
U3

ktrue
L2 k

true
L3 strue

3

3
5 (6.39)

with true vectors given by strue � Œstrue
1 strue

2 strue
3 �T , ktrue

U � Œktrue
U1 ktrue

U2 ktrue
U3 �

T , and
ktrue
L � Œktrue

L1 ktrue
L2 ktrue

L3 �
T . The dynamics of strue, ktrue

U , and ktrue
L are given by

Pstrue D �s (6.40a)

Pktrue
U D �U (6.40b)

Pktrue
L D �L (6.40c)

where the spectral densities of �s , �U , and �L are �2s I3, �
2
U I3, and �2LI3, respec-

tively. The error-state vector obeys the linearized dynamic equation

�Px.t/ D F.t/�x.t/CG.t/w.t/ (6.41)

where F.t/ is the Jacobian of f .x; t / and

w.t/ � ��Tv .t/ �Tu .t/ �Ts .t/ �TU .t/ �TL.t/
�T

(6.42)

The matrices F.t/, G.t/, and the spectral density Q.t/ of w.t/ are now derived for
the 15-state filter.
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If the error terms in S true are small, which is almost always a valid assumption, then
.I3 C S true/�1 � .I3 � S true/, leading to

!true D .I3 � S true/.! � ˇtrue � �v/ (6.43a)

O! D .I3 � OS/.! � Ǒ / (6.43b)

Then ı! is given by

ı! D ��S.! � Ǒ ��ˇ � �v/ � .I3 � OS/.�ˇ C �v/ (6.44)

where �S � S true � OS . Ignoring second-order terms leads to

ı! D �diag.! � Ǒ /�s � OU�kU � OL�kL � .I3 � OS/.�ˇ C �v/ (6.45)

with

OU D

2
64
!2 � Ǒ2 !3 � Ǒ3 0

0 0 !3 � Ǒ3
0 0 0

3
75 (6.46a)

OL D

2
64

0 0 0

!1 � Ǒ1 0 0

0 !1 � Ǒ1 !2 � Ǒ2

3
75 (6.46b)

where diag is defined in Eq. (2.8) and �s, �kU , and �kL are implicitly defined by
Eq. (6.39). Hence, the matrices F.t/, G.t/, and Q.t/ are given by

F.t/ D

2
666664

�Œ O!.t/�� �.I3 � OS/ �diag.! � Ǒ / � OU � OL
03�3 03�3 03�3 03�3 03�3
03�3 03�3 03�3 03�3 03�3
03�3 03�3 03�3 03�3 03�3
03�3 03�3 03�3 03�3 03�3

3
777775

(6.47a)

G.t/ D

2
666664

�.I3 � OS/ 03�3 03�3 03�3 03�3
03�3 I3 03�3 03�3 03�3
03�3 03�3 I3 03�3 03�3
03�3 03�3 03�3 I3 03�3
03�3 03�3 03�3 03�3 I3

3
777775

(6.47b)

Q.t/ D blkdiag
��
�2v I3 �

2
u I3 �

2
s I3 �

2
U I3 �

2
L I3

�	
(6.47c)

where blkdiag denotes a block diagonal matrix of appropriate dimension.
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Assume that N vector observations are available at time tk . We concatenate them to
form the 3N -dimensional measurement vector

yk D

2
6664

A.qtrue/r1
A.qtrue/r2

:::

A.qtrue/rN

3
7775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
tk

C

2
6664

�1

�2
:::

�N

3
7775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
tk

� hk.xtrue
k /C vk (6.48a)

R D blkdiag
�
R1 R2 � � � R3

�
(6.48b)

where Ri is the covariance of �i . We often make the simplifying assumption
that the measurement errors are isotropic so that Ri D �2i I3. The errors of unit
vector measurements are not isotropic, though, and the QUEST measurement model
(QMM) from Eq. (5.107) should be used instead. But this produces a singular matrix
to be inverted in the EKF. It turns out that the assumption of isotropic errors can be
justified, as will be shown in the following section.

We now derive the observation sensitivity matrix Hk.Ox�
k / for this observation.

The true attitude matrix, A.qtrue/, is related to the a priori attitude, A. Oq�/, through

A.qtrue/ D A.ıq/A. Oq�/ (6.49)

The first-order approximation of the error-attitude matrix, A.ıq/, is given by

A.ıq/ � I3 � Œı#�� (6.50)

For a single sensor the true and estimated body vectors are given by

btrue D A.qtrue/r (6.51a)

Ob� D A. Oq�/r (6.51b)

Substituting Eqs. (6.49) and (6.50) into Eq. (6.51) yields

�b � btrue � Ob� D �Œı#��A. Oq�/r D Œ Ob���ı# (6.52)

The sensitivity matrix for all measurement sets is therefore given by

Hk.Ox�
k / D

2
6666664

h Ob�
1 �
i
03�12h Ob�

2 �
i
03�12

:::
:::h Ob�

N�
i
03�12

3
7777775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
tk

(6.53)
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Table 6.1 Extended Kalman filter for gyro calibration

Initialize Oq.t0/ D q0; Ǒ .t0/ D ˇ0; Os.t0/ D s0
OkU .t0/ D kU0 ; OkL.t0/ D kL0 ; P.t0/ D P0

Gain Kk D P�

k H
T
k .Ox�

k /ŒHk.Ox�

k /P
�

k H
T
k .Ox�

k /CRk�
�1

Hk.Ox�

k / D

2
664
ŒA.Oq�/r1�� 03�12

:
:
:

:
:
:

ŒA.Oq�/rN�� 03�12

3
775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
tk

Update P
C

k D ŒI �KkHk.Ox�

k /�P
�

k

ı O#�

k D 03
OxC

k D Ox�

k CKkŒyk � hk.Ox�

k /�

Oxk �
h
ı O#Tk Ǒ T

k OsTk OkTUk OkTLk
iT

hk.Ox�

k / D

2
6664

A.Oq�/r1
A.Oq�/r2

:
:
:

A.Oq�/rN

3
7775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
tk

Oq� D Oq�

k C 1

2
�.Oq�

k /ı
O#C

k

OqC

k D q�=kq�k

Propagation O!.t/ D ŒI3 � OS.t/�Œ!.t/� Ǒ .t/�
POq.t/ D 1

2
� .Oq.t// O!.t/

PP .t/ D F.t/ P.t/C P.t/ F T .t/CG.t/Q.t/GT .t/

The final part in the EKF involves the quaternion and bias updates. The state
update follows Eq. (6.25), which assumes that the state is reset before every
measurement update and that the non-attitude part of the state is reset implicitly.
Thus

OxC
k D Ox�

k CKkŒyk � hk.Ox�
k /� (6.54)

where Oxk �
h
ı O#Tk Ǒ

T

k OsTk OkTUk OkTLk
iT

and hk.Ox�
k / is the estimated observation,

given by

hk.Ox�
k / D

2
6664

Ob�
1Ob�
2
:::
Ob�
N

3
7775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
tk

(6.55)

The attitude estimation algorithm is summarized in Table 6.1. The filter is
first initialized with a known state (the bias initial condition is usually assumed
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zero) and error covariance matrix. The first three diagonal elements of the error
covariance matrix correspond to attitude errors. Then, the Kalman gain is computed
using the measurement-error covariance Rk and sensitivity matrix in Eq. (6.53).
The state error covariance follows the standard EKF update, while the state update is
computed using Eq. (6.54). The quaternion is reset following Eqs. (6.27) and (6.28).
Finally, the estimated angular velocity is used to propagate the quaternion kinematic
model and error covariance in the EKF.

A discrete-time propagation, given by Eq. (12.131), can be used for the covari-
ance matrix in order to reduce the computational load. The first step is to set up the
following 2n � 2n matrix, where n D 15 in the present case [40]:

A D
� �F GQGT

0n�n F T

�
�t (6.56)

The matrix exponential is then calculated:

B D eA D
�

B11 B12

0n�n B22

�
D
�

B11 ˚
�1
k Qk

0n�n ˚T
k

�
(6.57)

The state transition and covariance matrices are then given as

˚k D BT
22 (6.58a)

Qk D ˚kB12 (6.58b)

Note that Eq. (6.56) is only valid for constant system and covariance matrices, but
this is a good approximation for small �t . Often adequate results are provided by
an even simpler first-order approximation:

˚k � In C�t F.t/ (6.59a)

Qk � �t GQGT (6.59b)

Then Eq. (3.17) gives the discrete-time quaternion propagation as

Oq�
kC1 D expŒ.��=2/˝� OqC

k � N�. O!C
k / OqC

k (6.60)

with

N�. O!C
k / �

2
66664

cos

�
1

2
k O!C

k k�t
�
I3 �

h O C
k �
i O C

k

� O CT
k cos

�
1

2
k O!C

k k�t
�

3
77775

(6.61)
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where

O C
k �

sin

�
1

2
k O!C

k k�t
�
O!C
k

k O!C
k k

(6.62)

Example 6.1. In this example, simulation results are presented for the aforemen-
tioned gyro calibration algorithm. A 90-min simulation run is shown. Quaternion
measurements are assumed to exist, sampled every second, and the covariance of
the measurements is given by Rk D 36I3 arcsec2. This assumes that errors in
each axis are equivalent. Using one star tracker typically produces errors along the
boresight axis that are an order of magnitude larger than the other axes. Using two
star trackers that are orthogonal produces errors that are more nearly isotropic. Also,
two star trackers are typically employed for redundancy purposes. The spacecraft
angular velocity is given by!true D 0:1�Œsin.0:01t/ sin.0:0085t/ cos.0:0085t/�T

deg/s. This angular velocity is used to increase the observability of the calibration
parameters. Missions typically perform calibration maneuvers to ensure proper
observability. The other parameters used in the simulation are given by

• Initial gyro bias: 0:1 deg/h for each axis,
• Gyro scale factors: s1 D 1;500 ppm, s2 D 1;000 ppm, s3 D 1;500 ppm,
• Gyro misalignments: kU1 D 1;000 ppm, kU2 D 1;500 ppm, kU3 D 2;000 ppm,
kL1 D 500 ppm, kL2 D 1;000 ppm, kL3 D 1;500 ppm,

• Gyro noise parameters: �u D
p
10 � 10�10 rad/s3=2, �v D

p
10 � 10�7 rad/s1=2,

�s D �U D �L D 0,
• Initial quaternion: qtrue

0 D
p
2=2 � Œ1 0 0 1�T .

where ppm denotes parts per million. The gyros are also assumed to be sampled
every second. The EKF attitude is initialized using the measurement quaternion and
the initial covariance is given by .6=3;600 � =180/2I3 rad2. All gyro calibration
parameters are assumed to be initialized to zero. The initial covariances for these
parameters are: initial gyro bias covariance of .0:2=3;600 � =180/2I3 (rad/s)2,
initial scale factor covariance of .0:002=3/2I3 rad2, initial upper misalignment
covariance of .0:002=3/2I3 rad2, and initial lower misalignment covariance of
.0:002=3/2I3 rad2.

The EKF errors with their respective 3� bounds for the attitude, gyro biases,
scale factors and upper misalignments are shown in Fig. 6.1. Roll, pitch, and yaw
denote the components of ı# . The attitude errors converge in about 15 min and
good filtering performance is obtained. The gyro biases are also well estimated with
3� bounds of about 0.01 deg/h in each axis. The scale factors and misalignments
take slightly longer to converge than the attitude and gyro biases, but they are also
well estimated with 3� bounds of about 25 �rad in each axis. The EKF estimates
are then employed in a smoother to further refine the estimates. The smoothed
estimates and covariances of each parameter are nearly constant over the entire
simulation run. Estimates with their respective 3� bounds are shown in Table 6.2.
Clearly, as expected, the smoother is able to provide more accurate results than the
EKF.
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Fig. 6.1 Extended Kalman filter results. (a) Attitude errors and 3� bounds. (b) Bias errors and 3�
bounds. (c) Scale errors and 3� bounds. (d) Upper misalignment errors and 3� bounds

Table 6.2 Smoother results
for gyro calibration

Parameter Truth Estimate

ˇ1 (deg/h) 0.1 0:0981˙ 0:0065

ˇ2 (deg/h) 0.1 0:1029˙ 0:0065

ˇ3 (deg/h) 0.1 0:0999˙ 0:0065

s1 (ppm) 1;500 1;497˙ 14:5800

s2 (ppm) 1;000 997˙ 13:5651

s3 (ppm) 1;500 1;488˙ 13:6671

kU1 (ppm) 1;000 991˙ 13:5936

kU2 (ppm) 1;500 1;501˙ 13:6984

kU3 (ppm) 2;000 1;999˙ 13:7233

kL1 (ppm) 500 499˙ 14:6252

kL2 (ppm) 1;000 994˙ 14:6197

kL3 (ppm) 1;500 1;497˙ 13:6126
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6.2.3 Filtering and the QUEST Measurement Model

The previous section asserted that using the QMM causes the matrix HPHTCR to
be singular at all times, where H is given by Eq. (6.53) and

R D blkdiag
���21 Œ Ob1��2 ��22 Œ Ob2��2 � � � ��2N Œ ObN��2

�
(6.63)

A matrix M is singular if and only if it has a null vector, i.e. a nonzero vector z
such that M z D 0. Since the matrices HPHT and R both contain the same cross
product matrices it is easy to see that

z D � ObT1 ObT2 � � � ObTN
�T

(6.64)

is a null vector of HPHT CR. Note that other null vectors may exist, but all we
need is one to prove that using the QMM leads to a matrix that cannot be inverted
in the EKF gain equation.

There are several ways to avoid this singularity. The first is to note that we never
really measure a unit vector. In the case of a star tracker, for example, the actual
measurement vector is given by Eq. (4.3) as

h.xtrue/ D
�

u
v

�
D
�

u0
v0

�
C f

r st
3

�
r st
1

r st
2

�
(6.65)

where rst D BA.qtrue/rtrue, B is the orthogonal star tracker alignment matrix, rtrue

is the star unit vector in the celestial coordinate frame, and the subscripts 1; 2; 3 are
Cartesian indices. The attitude part of the sensitivity matrix for this measurement
model is found by the chain rule to be

H# D @h
@rst

@rst

@.ı#/
D f

. Or st
3 /
2

� Or st
3 0 �Or st

1

0 Or st
3 �Or st

2

�
ŒOrst��B (6.66)

Then R and HPHTCR are well-conditioned 2 � 2 matrices.
It is often desirable to compute a unit vector from the sensor measurements for

input to the filter, in order to provide a universal filter interface from a variety of
sensors. The nonsingular unit vector measurement covariance matrix of Eq. (5.126)
could be used in place of the QMM, but this would produce an ill-conditioned matrix
HPHT CR, which is not much of an improvement. Fortunately, Malcolm Shuster
found a way out of this dilemma.

Shuster’s analysis of this singularity issue leads to a remarkably simple solution
[35]. Let 	 be a unit vector that is very close to Atruer, and let f	; ˛.	/; ˇ.	/g
be a right-handed orthogonal triad. We can determine b by measuring only two
components nearly perpendicular to Atruer:

�1 D ˛.	/ � b (6.67a)

�2 D ˇ.	/ � b (6.67b)
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The measurement vector is given in terms of the projection matrix

U.	/ � �˛.	/ ˇ.	/�T (6.68)

by


 � Œ�1 �2�T D U.	/b (6.69)

The projection matrix satisfies the identities

U.	/U T .	/ D I2 (6.70a)

UT .	/ U.	/ D I3 � 		T (6.70b)

Substituting the measurement model b D AtruerC � into Eq. (6.69) leads to


 D U.	/AtruerC e (6.71)

where e D U.	/�. If � obeys the QMM, Ef��T g D �2ŒI3 � .Atruer/.Atruer/T �,
then the projected error e satisfies

E feg D 0 (6.72a)

E
˚
e eT

� D �2 ˚I2 � ŒU.	/Atruer�ŒU.	/Atruer�T
�

(6.72b)

Since 	 is very close to Atruer then kU.	/Atruerk � 1 and we can neglect the
second term in Eq. (6.72b), yielding

R� � E
˚
e eT

� D �2I2 (6.73)

which is a nonsingular matrix.
The vector 	 has been undefined, except for being close to Atruer. This will

now be specifically defined in the Kalman filter setting. Substituting Eqs. (6.49)
and (6.50) into Eq. (6.71) leads to


 D U.	/.I3 � Œı#��/ Ob� C e (6.74a)

D U.	/. Ob� C Ob� � ı#/C e (6.74b)

If we choose 	 D Ob�, the first term in Eq. (6.74b) vanishes because U. Ob�/ Ob� D 0.
Defining U� � U. Ob�/ gives


 � U�b D U�Œ Ob���ı# C e (6.75)
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Now define the following error vector: �x � Œı#T ��T �T , where �� is an n � 1
vector of non-attitude error states, such as the error gyro biases. Then the linearized
measurement equation becomes


 D H �xC e (6.76)

where H is given by

H D �W 02�n
�

(6.77)

with W � U�Œ Ob���.
The predicted innovations covariance is given by

E� D H P�HT CR� D W P�
##W

T C �2I2
D U� Œ Ob���P�

## Œ
Ob���T C �2I3

�
.U�/T

(6.78)

where P�
## is the upper-left 3 � 3 corner of P�. Because 	 is very close to Atruer,

the inverse of this is, to a very good approximation,

.E�/�1 D U� Œ Ob���P�
## Œ
Ob���T C �2I3

��1
.U�/T (6.79)

Note that this would be trivial if U� were orthogonal, but it is not.
The Kalman gain is given by K D P�HT .H P�HT CR�/�1. If we define

H � �Œ Ob��� 03�n
�

(6.80a)

K � P�H T .H P�H T C �2I3/�1 (6.80b)

then we have

H P�H T C �2I3 D Œ Ob���P�
## Œ
Ob���T C �2I3 (6.81a)

KH D K H (6.81b)

Equation (6.81) indicates that the QMM can be effectively replaced by �2I3, in
the sense that it leads to the same filter that uses the projected measurements in
Eq. (6.67)! Note that the projection matrixU� does not appear in H or K . We have
recovered the usual Kalman filter equations for a unit vector measurement, but with
a nonsingular isotropic measurement covariance matrix in place of the singular
QMM expression. Shuster shows that all other equations in the original EKF remain
unchanged. This analysis can easily be extended to multiple observations.



6.2 Attitude Estimation 257

Table 6.3 Extended Kalman filter for attitude estimation

Initialize Oq.t0/ D Oq0; Ǒ .t0/ D Ǒ
0

P.t0/ D P0

Gain Kk D P�

k H
T
k .Ox�

k /ŒHk.Ox�

k /P
�

k H
T
k .Ox�

k /CRk�
�1

Hk.Ox�

k / D

2
664
ŒA.Oq�/r1�� 03�3

:
:
:

:
:
:

ŒA.Oq�/rN�� 03�3

3
775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
tk

Update P
C

k D ŒI �KkHk.Ox�

k /�P
�

k

�OxC

k D KkŒyk � hk.Ox�

k /�

�OxC

k �
h
ı O#CT

k � Ǒ CT

k

iT

hk.Ox�

k / D

2
6664

A.Oq�/r1
A.Oq�/r2

:
:
:

A.Oq�/rN

3
7775

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
tk

Oq� D Oq�

k C 1

2
�.Oq�

k /ı
O#C

k

OqC

k D q�=kq�k
Ǒ C

k D Ǒ �

k C� Ǒ C

k

Propagation O!.t/ D !.t/� Ǒ .t/
POq.t/ D 1

2
� .Oq.t// O!.t/

PP .t/ D F.t/ P.t/C P.t/ F T .t/CG.t/Q.t/GT .t/

6.2.4 Mission Mode Kalman Filter

The EKF described in the Sect. 6.2.2 can be used for full gyro calibration, and
improved estimates can be obtained using a smoother. As mentioned previously,
the mission mode EKF estimates only attitude and gyro biases, assuming that the
scale factors and misalignments have already been determined. The 6-state EKF
attitude estimator is shown in Table 6.3. Note that in this formulation �Ox is used
and only one update is performed at each time step, so that the measurement update
follows Eq. (6.24) and an explicit update of the bias vector is performed. This
formulation and the one in the next section are equivalent and both have been seen
in the open literature. Thus we feel it is important to see how each approach is
implemented.
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The matrices F.t/, G.t/, and Q.t/ are given by

F.t/ D
��Œ O!.t/�� �I3

03�3 03�3

�
(6.82a)

G.t/ D
��I3 03�3
03�3 I3

�
(6.82b)

Q.t/ D
�
�2v I3 03�3
03�3 �2u I3

�
(6.82c)

Closed-form expressions for the discrete-time matrices are possible in this case. The
discrete error-state transition matrix is given by

˚ D
�
˚11 ˚12
˚21 ˚22

�
(6.83a)

˚11 D I3 � Œ O!�� sin.k O!k�t/
k O!k C Œ O!��2 f1 � cos.k O!k�t/g

k O!k2 (6.83b)

˚12 D Œ O!��f1 � cos.k O!k�t/g
k O!k2 � I3�t � Œ O!��2 fk O!k�t � sin.k O!k�t/g

k O!k3
(6.83c)

˚21 D 03�3 (6.83d)

˚22 D I3 (6.83e)

It is left as an exercise to derive these equations and to show that˚11 is an orthogonal
matrix.

The conversion from the spectral density Q.t/ to discrete-time covariance Qk is
given by [8]

Qk D
Z �t

0

˚.t/G.t/Q.t/GT .t/˚T .t/ dt (6.84)

It is assumed in the ensuing derivations for Qk that O! is constant throughout the
sampling interval. Partition the matrix Qk into 3 � 3 sub-matrices:

Qk D
"
Q11k Q12k

QT
12k

Q22k

#
(6.85)

Performing the multiplication B.t/ � ˚.t/G.t/Q.t/GT .t/˚T .t/ gives

B.t/ D
�
�2v˚11˚

T
11 C �2u˚12˚T

12 �
2
v˚11˚

T
21 C �2u˚12˚T

22

�2v˚21˚
T
11 C �2u˚22˚T

12 �
2
v˚21˚

T
21 C �2u˚22˚T

22

�
(6.86)
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Using Eqs. (6.83d) and (6.83e) and the orthogonality of ˚11 simplifies B.t/ to

B.t/ D
�
�2v I3 C �2u˚12˚T

12 �
2
u˚12

�2u˚
T
12 �2u I3

�
(6.87)

Therefore, Q22k is simply given by

Q22k D .�2u�t/I3 (6.88)

Integrating ˚12 gives

Q12k D �2u
Z �t

0

˚12 dt D �2u


Œ O!k��k O!kk�t � sin.k O!kk�t/

k O!kk3 � 1
2
�t2I3

� Œ O!k��2
1
2
k O!kk2�t2 C cos.k O!kk�t/ � 1

k O!kk4
)

(6.89)

If the sampling rate is below Nyquist’s limit (for example, with a safety factor of 10
we require k O!k�t < =10 for all time), then Q12k � � 12�2u�t2I3.

Performing the multiplication ˚12˚T
12 yields

˚12˚
T
12 D �Œ O!��2

1 � 2 cos.k O!k t /C cos2.k O!k t /
k O!k4

� Œ O!��2 k O!k
2t2 � 2k O!k t sin.k O!k t /C sin2.k O!k t /

k O!k4

C 2Œ O!��2 k O!k t
2 � t sin.k O!k t /
k O!k3 C t 2I3

D �Œ O!��2 2 � 2 cos.k O!k t / � k O!k2t2
k O!k4 C t 2I3 (6.90)

The integral of ˚12˚T
12 dt is

Z �t

0

˚12˚
T
12 dt D �Œ O!��2

2k O!k�t � 2 sin.k O!k�t/ � 1
3
k O!k3�t3

k O!k5 C 1

3
�t3I3

(6.91)
Therefore, Q11k is given by

Q11k D .�2v�t/I3

C �2u
(
1

3
�t3I3 � Œ O!k��2

2k O!kk�t � 2 sin.k O!kk�t/ � 1
3
k O!kk3�t3

k O!kk5
)

(6.92)
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If the sampling rate is below Nyquist’s limit, then Q11k �
�
�2v�t C 1

3
�2u�t

3
	
I3.

Then, the discrete process noise covariance is approximated by

Qk �

2
66664

�
�2v�t C

1

3
�2u�t

3

�
I3 �

�
1

2
�2u�t

2

�
I3

�
�
1

2
�2u�t

2

�
I3

�
�2u�t

	
I3

3
77775

(6.93)

It should be noted that Eq. (6.93) is exact when F.t/ is given by

F.t/ D
�
03�3 �I3
03�3 03�3

�
(6.94)

Equation (6.93) is often used because the sampling rate is often below Nyquist’s
limit. These discrete-time forms make the EKF especially suitable for onboard
implementation.

6.2.5 Murrell’s Version

The gain calculation in the filter shown in Table 6.1 requires inverting a 3N �
3N matrix. Murrell’s variation of the filter can be used to avoid this expensive
computation [27]. Even though the EKF involves nonlinear models, a linear update
is still performed. Therefore, linear tools such as the principle of superposition
are applicable. Murrell’s filter uses this principle to process one 3 � 1 vector
observation at a time, delaying the reset until all N observations have been
processed. In this case, all the terms of Eq. (6.20) must be included. A flow diagram
of Murrell’s approach is given in Fig. 6.2. The first step involves propagating the
quaternion, gyro bias, and error covariance to the current observation time. Then the
attitude matrix is computed and the error state vector is initialized to zero. Next, the
error covariance and state quantities are updated using a single vector observation.
This update is continued (replacing the propagated error covariance and state vector
with the updated values) until all vector observations are processed. Finally, a reset
moves the updated values into the global state representation, and the global state
and error covariance are propagated to the next observation time. Therefore, this
approach reduces taking an inverse of a 3N � 3N matrix to taking an inverse of a
3 � 3 matrix N times, significantly decreasing the computational load.

Example 6.2. This example is a simulation of an EKF using a typical star tracker
to determine the attitude of a spacecraft in a 90-min low-Earth orbit. The spacecraft
rotates at one revolution per orbit about its�x body axis, which is the i3 vector of the
inertial reference frame shown in Fig. 2.3. The star tracker’s boresight is assumed
to be along the z (yaw) body axis pointed in the anti-nadir direction, and is initially
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Fig. 6.2 Computationally efficient attitude estimation algorithm

aligned with the i1 vector of the inertial reference frame. The star tracker can sense
up to 10 stars in a 6ı�6ı field of view. The catalog contains stars that can be sensed
up to a magnitude of 6.0 (larger magnitudes indicate dimmer stars).

The star tracker body observations are obtained by using the measurement model
presented in Sect. 4.2 with � D .0:005=3/ı. We also assume that no Sun intrusions
are present (although this is not truly realistic). Star images are taken at 1-s intervals.
The goal of the EKF is to estimate the attitude and gyro biases by filtering the star
tracker measurements. The noise parameters for the gyro measurements are given
by �u D

p
10 � 10�10 rad/s3=2 and �v D

p
10 � 10�7 rad/s1=2. The initial bias

for each axis is given by 0.1 deg/h. Also, the gyro measurements are sampled at
the same rate as the star tracker measurements (i.e. at 1 Hz). We should note that in
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Fig. 6.3 Mission mode extended Kalman filter results. (a) Number of available stars. (b) Attitude
errors and 3� bounds. (c) Gyro drift estimates

practice the gyros are sampled at a much higher frequency, which is usually required
for jitter control. The initial covariance for the attitude error is set to 0:12 deg2,
and the initial covariance for the gyro drift is set to 0:22 (deg/h)2. Converting these
quantities to radians and seconds gives the initial attitude and gyro drift covariances
for each axis: P a

0 D 3:0462 � 10�6 rad2 and P b
0 D 9:4018 � 10�13 (rad/s)2, so

that the initial covariance matrix is given by P0 D diagŒP a
0 P a

0 P a
0 P b

0 P b
0 P b

0 �.
The initial attitude estimate for the EKF is given by the true quaternion, which is
given by qtrue

0 D p2=2 � Œ0 1 0 1�T . The initial gyro drift biases in the EKF are
set to zero.

Figure 6.3a shows a plot of the number of available stars. Note that at a few times
only one star is available, so the static attitude determination methods of Chap. 5
cannot be employed at these times. However, this is not an issue with the EKF
since an update is still possible even with one star. Note that an EKF-based solution
is possible unless there is never more than one star available and it is always the
same star. Figure 6.3b shows a plot of the attitude errors and associated 3� bounds.
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Clearly, the computed 3� bounds do indeed bound the attitude errors. Note that the
yaw errors are much larger than the roll and pitch errors because the boresight of
the star tracker is along the yaw axis. Figure 6.3c shows that the EKF is able to
accurately estimate the gyro drift bias. The “drift” in this plot looks very steady,
due to the fact that a high-grade three-axis gyro has been used in the simulation.
This example clearly shows the power of the EKF, which has been successfully
applied for attitude estimation of many spacecraft. The unscented Kalman filter
provides a more robust approach to initial condition errors [11].

6.3 Farrenkopf’s Steady-State Analysis

In this section we consider the case of single-axis attitude estimation with an angle
measurement and gyro outputs used in place of a dynamic model. The single angle
case is useful because Farrenkopf found a closed-form solution for its Kalman
filter error-covariance [15]. We will use an alternative derivation that includes an
additional source of gyro errors not included in Farrenkopf’s original analysis [26].

The true single-axis attitude angle � true obeys the kinematic equation

P� true D ! true (6.95)

where ! true is the true angular velocity. A rate-integrating gyro measures an angle
�RIG, which is the integral of

P�RIG D ! D ! true C ˇtrue C �v (6.96)

where ! is the rate sensed by the gyro, which is corrupted by the gyro drift ˇtrue and
a zero-mean Gaussian white-noise process �v with spectral density �2v . The drift rate
is modeled by a random walk process, given by

P̌true D �u (6.97)

where �u is a zero-mean Gaussian white-noise process with spectral density given
by �2u . Thus the three-component state x D Œ� true ˇtrue �RIG�T obeys the discrete-
time propagation equation

x.t C ıt/ D
2
4
1 0 0

0 1 0

0 ıt 1

3
5 x.t/C

2
4
1

0

1

3
5 ı� true C

2
4
0

Nu

Nv

3
5 (6.98)
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In this equation ıt is the interval between gyro measurements and is not assumed to
be infinitesimal. The angular motion ı� true, the integral of ! true over ıt , is also not
infinitesimal. The quantities Nu and Nv are defined by

Nu D
Z tCıt

t

�u.t
0/dt 0 (6.99a)

Nv D
Z tCıt

t

�
�v.t

0/C .t C ıt � t 0/�u.t
0/
�
dt 0 (6.99b)

Now we will use the gyro measurement in place of the unknown angular
motion ı� true. This is what we mean by saying that we use the gyros as a replacement
for a dynamic model. The gyro measurement at the end of the propagation interval is

�out.t C ıt/ D �RIG.t C ıt/C ve D
�
0 ıt 1

�
x.t/C ı� true CNv C ve (6.100)

where ve is a zero-mean Gaussian measurement noise with variance �2e . We assume
that �u, �v , and ve are uncorrelated. Solving this equation for ı� true in terms of
�out.t C ıt/ and substituting back into Eq. (6.98) gives

x.t C ıt/D
2
4
1 0 0

0 1 0

0 ıt 1

3
5 x.t/C

2
4
1

0

1

3
5˚�out.tCıt/� �0 ıt 1� x.t/�Nv�ve

�C
2
4
0

Nu

Nv

3
5

D
2
4
1 �ıt �1
0 1 0

0 0 0

3
5 x.t/C

2
4
1

0

1

3
5 �out.t C ıt/C

2
4
�Nv � ve

Nu

�ve

3
5 (6.101)

This is the discrete-time state propagation equation with the gyros used in dynamic
model replacement mode. Because �u, �v , and ve have zero mean, the expectation
Ox � Efxg and the state error vector �x � x � Ox obey

Ox.t C ıt/ D ˚.ıt/ Ox.t/C
2
4
1

0

1

3
5 �out.t C ıt/ (6.102a)

�x.t C ıt/ D ˚.ıt/�x.t/C
2
4
�Nv � ve

Nu

�ve

3
5 (6.102b)

where

˚.ıt/ D
2
4
1 �ıt �1
0 1 0

0 0 0

3
5 (6.103)
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The covariance P � Ef�x�xT g propagates according to

P.t C ıt/ D ˚.ıt/P.t/˚T .ıt/CQ.ıt/ (6.104)

where

Q.ıt/ D E

8̂
<
:̂

2
4
�Nv � ve

Nu

�ve

3
5
2
4
�Nv � ve

Nu

�ve

3
5
T
9>=
>;

D

2
666664

�2v ıt C 1
3
�2u ıt

3 C �2e � 1
2
�2u ıt

2 �2e

� 1
2
�2u ıt

2 �2u ıt 0

�2e 0 �2e

3
777775

(6.105)

The expectation calculations involved inQ.ıt/ are very similar to the computations
in Sect. 4.7.1. It is easy to show by mathematical induction that propagation by n
steps gives

P.t C nıt/ D ˚.nıt/P.t/˚T .nıt/CQ.nıt/ (6.106)

This equation has two remarkable properties. The first is that it depends only on
the total propagation time nıt and not on n and ıt separately. The second is that the
noise term �e does not accumulate, so that the covariance only depends on the output
noise of the last readout.

Now assume that we have measurements from an angle sensor at an interval �t
that is some multiple of the gyro measurement time. It doesn’t matter what the angle
sensor is, but we assume that its measurement variance is the scalar �2n . We want to
find a steady-state solution for the covariance, which means that we have the same
covariance P� before every angle sensor measurement and the same covariance
PC after every measurement update. These obey the Kalman filter propagation and
update equations (see Table 12.2)

P� D ˚.�t/PC˚T .�t/CQ.�t/ (6.107a)

PC D P� � P�HT .HP�HT C �2n/�1HP� (6.107b)

The measurement sensitivity matrix is H D Œ 1 0 0 �, so HP�HT is a scalar. Equa-
tion (6.107) are equivalent to 12 coupled scalar equations for the 12 independent
components of the symmetric covariance matrices P� and PC. Solving them is
straightforward but difficult, so we will just state the solution:
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P� D �2n

2
666664

�2 � 1 �� Su=�t S2e

�� Su=�t
�
� � .1C S2e /��1 C 1

2
Su
�
Su=�t

2 0

S2e 0 S2e

3
777775

(6.108a)

PC D �2n

2
666664

1 � ��2 ���1Su=�t ��2S2e

���1Su=�t
�
� � .1C S2e /��1 � 1

2
Su
�
Su=�t

2 ��1S2e Su=�t

��2S2e ��1S2e Su.�t/
�1 S2e .1 � ��2S2e /

3
777775

(6.108b)

where

Su � �u�t
3=2=�n (6.109a)

Sv � �v�t1=2=�n (6.109b)

Se � �e=�n (6.109c)

and where � obeys the quartic equation

0 D �4 � Su�
3 � �2.1C S2e /C S2v � S2u =6

�
�2 � .1C S2e /Su� C .1C S2e /2

D ��2 � 2.� C Su=4/� C 1C S2e
� �
�2 C 2.� � Su=4/� C 1C S2e

�
(6.110)

with

� �
r
1C S2e C

1

4
S2v C

1

48
S2u (6.111)

Equation (6.110) has four roots, but the only root giving a positive definite PC is
the largest one, namely

� D � C 1

4
Su C 1

2

r
2�Su C S2v C

1

3
S2u (6.112)

We are not interested in the entire covariance matrix. The quantities of greatest
interest are the standard deviation of the angle estimate, which is the square root
of the 1�1 component of the covariance, and the standard deviation of the drift
estimate, which is the square root of the 2�2 component. The standard deviations
prior to the sensor update are
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��
� D �n

p
�2 � 1 (6.113a)

� �̌ D
p
2�n�u�t

�1=4
q
� � .1C S2e /��1 C Su=2 (6.113b)

and after the update

�C
� D �n

p
1 � ��2 (6.114a)

�C
ˇ D

p
2�n�u�t

�1=4
q
� � .1C S2e /��1 (6.114b)

If �e D 0, the third columns and third rows of Q, P�, and PC are all zero,
reflecting the fact that the gyro measurements give perfect knowledge of �RIG. In this
case, the covariance propagation and update equations are equivalent to

QP� D Q̊ .�t/ QPC Q̊ T .�t/C QQ.�t/ (6.115a)

QPC D QP� � QP� QHT . QH QP� QHT C �2n/�1 QH QP� (6.115b)

where QP�, QP�, QPC, QQ, and Q̊ are the upper-left 2 � 2 blocks of P�, PC, Q, and
˚ with �e D 0, respectively, and QH D Œ 1 0 �. This is the model originally analyzed
by Farrenkopf, and it is the basis of most of the Kalman filters used on spacecraft
and presented in this text. It corresponds to the dynamical model of Eqs. (6.95)
and (6.38) with S true D 0, namely

P� true D ! � ˇtrue � �v (6.116a)

P̌true D �u (6.116b)

This is the dynamical model that was used in Farrenkopf’s original paper, and it has
been used by guidance and control engineers for many years [15]. It was the basis
for the analysis in Sect. 4.7.1 and will be employed extensively in this chapter.
It is useful to retain the dependence on gyro electronic noise �e for covariance
estimates, though.

Figure 6.4 shows the pre- and post-update angle standard deviations for angle
sensor update times between 0.01 and 100 s for parameters characteristic of a ring
laser gyro with very low drift: �v D 0:025 deg/h1=2 D 7:27�rad/s1=2 and �u D
3:7 � 10�3 deg/h3=2 D 3 � 10�4 �rad/s3=2. The angle sensor is assumed to be a star
tracker having measurement noise with standard deviation �n D 15�rad. The solid
curves are for �e D 5�rad, and the dashed curves are for �e D 0. It is clear from
the figure that gyro output white noise is only important for frequent star tracker
updates, and that it causes the estimation accuracy to fall more slowly in that limit.

In the limiting case of very frequent updates, the pre-update and post-update
attitude error standard deviations both approach constant values if �e ¤ 0. In this
case � � � �p1C S2e and
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Fig. 6.4 Steady-state attitude estimation standard deviations, solid curves for �e D 5�rad, dashed
curves for �e D 0
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If �e D 0, the frequent-update case approaches the continuous-update limit,
given by

��̇ ! �n.S
2
v C 2Su/

1=4 D �t1=4�1=2n

�
�2v C 2�n�u�t

1=2
	1=4

(6.118)

The even simpler limiting form when the contribution of �u to the attitude error is
negligible is given by

��̇ ! �t1=4.�n�v/
1=2 (6.119)

which indicates a one-half power dependence on both �n and �v , and a one-fourth
power dependence on the update time �t . This shows why it is extremely difficult
to improve the attitude performance by simply increasing the update frequency.
To lowest order in �u, the standard deviation of the gyro drift bias approaches

� ˙̌ ! .�u�v/
1=2 (6.120)

in the frequent update limit, regardless of whether or not �e is zero. The fact that the
attitude covariance has a “floor” determined by �e reveals a shortcoming of using
gyros in model replacement mode. Rotational inertia prevents the spacecraft from
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executing motions on the order of �e on very short time scales, and a filter incorpo-
rating actual spacecraft dynamics would reflect this fact. The extra computational
effort cannot be justified if Farrenkopf’s covariance estimates indicate that mission
requirements can be met without dynamic modeling.

Farrenkopf’s equations bound the expected attitude and bias errors to provide an
initial estimate of attitude performance. Using the noise parameters of Example 6.2
in Eq. (6.119) gives an approximate 3� bound of 6:96�rad for the attitude error,
which is very to close the actual solution of 7:18 �rad. Even though the actual
model is not a single-axis model, Farrenkopf’s analysis can provide good estimates
for various gyro parameters and sampling intervals. Converting 6:96 �rad to
degrees gives 4 � 10�4 deg, which closely matches the roll and pitch errors of the
results shown in Fig. 6.3b.

6.4 Magnetometer Calibration

A paramount issue to the attitude accuracy obtained using magnetometer measure-
ments is the precision of the onboard calibration. The accuracy obtained using
a three-axis magnetometer (TAM) depends on a number of factors, including:
biases, scale factors, and non-orthogonality corrections. Scale factors and non-
orthogonality corrections occur because the individual magnetometer axes are
not orthonormal, typically due to thermal gradients within the magnetometer or
to mechanical stress from the spacecraft [1]. Magnetometer calibration is often
accomplished using batch methods, where an entire set of data must be stored
to determine the unknown parameters. This process is often repeated many times
during the lifetime of a spacecraft in order to ensure that the best possible precision
is obtained from magnetometer measurements.

The magnetometer calibration problem is easy to solve if an accurate attitude
estimate is known a priori. However, this is generally not the case. Fortunately,
the norms of the body-measurement and geomagnetic-reference vectors provide
an attitude-independent scalar observation. For the noise-free case, these norms
are identical because the attitude matrix preserves the length of a vector. This
process is also known as “scalar checking” [22]. Unfortunately, even for the simpler
magnetometer-bias determination problem, the loss function to be minimized is
quartic in nature. Gambhir proposed the most common technique to overcome this
difficulty, a “centering” approximation to yield a quadratic loss function that can be
minimized using simple linear least squares [17]. Alonso and Shuster expand upon
Gambhir’s approach by using a second step that employs the centered estimate as
an initial value to an iterative nonlinear least squares approach. Their algorithm,
called “TWOSTEP” [2], has been shown to perform well when other algorithms fail
due to divergence problems. The algorithm presented here is Alonso and Shuster’s
extension of this approach to perform a complete calibration involving biases as well
as scale factors and non-orthogonality corrections [1]. All of these approaches are
based on batch processing. A realtime approach is shown in [9].
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6.4.1 Measurement Model

In this section the TAM measurement model and attitude-independent observation
are summarized. More details on these concepts can be found in [1]. The magne-
tometer measurements can be modeled as

Bk D .I3 CDtrue/�1.OT Atrue
k Rk C btrue C �k/; k D 1; 2; : : : ; N (6.121)

where Bk is the measurement of the magnetic field by the magnetometer at time
tk , Rk is the corresponding value of the geomagnetic field with respect to the
Earth-Centered/Earth-Fixed (ECEF) system, Atrue

k is the unknown attitude matrix
of the magnetometer with respect to the Earth-fixed coordinates, Dtrue is an
unknown fully-populated matrix of scale factors (the diagonal elements) and non-
orthogonality corrections (the off-diagonal elements), O is an orthogonal matrix
(see [1] for a discussion on the physical connotations of this matrix), btrue is the
bias vector, �k is the measurement noise vector that is assumed to be a zero-
mean Gaussian process with covariance ˙k , and N is the total number of available
measurements. The matrix Dtrue can be assumed to be symmetric without loss of
generality, because any skew-symmetric contribution is equivalent to a rotation that
can be absorbed into O:

Dtrue D
2
4
Dtrue
11 Dtrue

12 Dtrue
13

Dtrue
12 Dtrue

22 Dtrue
23

Dtrue
13 Dtrue

23 Dtrue
33

3
5 (6.122)

The goal of the full attitude-independent calibration problem is to estimateDtrue and
btrue, because an attitude-independent method cannot observe O .

An attitude-independent approach is possible by computing

yk � kBkk2 � kRkk2

D �BTk Œ2D
true C .Dtrue/2�Bk C 2BTk .I3 CDtrue/btrue � kbtruek2 C vk

(6.123)
where the effective noise is given by

vk � 2Œ.I3 CDtrue/Bk � btrue�T �k � k�kk2 (6.124)

The effective noise is approximately Gaussian with mean�k � E fvkg and variance
�2k � E

˚
v2k
� � �2k given by

�k D �tr.˙k/ (6.125a)

�2k D 4Œ.I3 CDtrue/Bk � btrue�T ˙kŒ.I3 CDtrue/Bk � btrue�C 2 �tr˙2
k

	

(6.125b)

˙k D E
˚
�k�

T
k

�
(6.125c)
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Note that the measurement variance is a function of the unknown parameters.
The attitude-independent measurement in Eq. (6.123) is highly nonlinear in the

calibration parameters. We can define a modified state vector so that the nonlinear
dependence appears in only one term. To accomplish this task the following
quantities are first defined:

E true � 2Dtrue C .Dtrue/2 D
2
4
E true
11 E true

12 E true
13

E true
12 E true

22 E true
23

E true
13 E true

23 E true
33

3
5 (6.126a)

ctrue � .I3 CDtrue/btrue (6.126b)

Sk �
h
B2
1k
B2
2k
B2
3k
2B1kB2k 2B1kB3k 2B2kB3k

iT
(6.126c)

Etrue � �E true
11 E true

22 E true
33 E true

12 E true
13 E true

23

�T
(6.126d)

Note that E true is also symmetric. The attitude-independent measurement can now
be written as

yk D Lkx0true � kb.x0true
/k2 C vk (6.127)

where the row vector Lk and the modified state vector x0true are defined by

Lk �
�
2BTk �STk

�
(6.128a)

x0true � �.ctrue/T .Etrue/T
�T

(6.128b)

Now the only nonlinear dependence on x0true is in the term kb.x0true
/k2.

Equation (6.127) can be solved by iteration. We start with an initial estimate Ox0
0,

which can be zero, and compute

Ox0
i D P 0

NX
kD1

1

�2k

�
yk C kb.Ox0

i�1/k2 � �k
	
LTk for i D 1; 2; : : : (6.129)

where N is the number of observations and

P 0 D
 

NX
kD1

��2
k LTk Lk

!�1
(6.130)

The iteration is terminated when Ox0
i � Ox0

i�1 is less than some chosen tolerance.
This computation requires the conversion from Ox0 back to the variables b and

D [1]. The conversion of the true and estimated quantities is identical. Since E is
symmetric its singular value decomposition is given by

E D U S UT (6.131)



272 6 Filtering for Attitude Estimation and Calibration

where U is orthogonal and S is diagonal with elements s1, s2, and s3. To determine
D first compute the following elements of a diagonal matrix W :

wj D �1C
p
1C sj ; j D 1; 2; 3 (6.132)

Then the matrix D is given by

D D U W UT (6.133)

The vector b is simply given by

b D .I3 CD/�1c (6.134)

6.4.2 Centered Solution

The centering approximation effectively removes the nonlinear dependence of kbk2
in Eq. (6.127), making it possible to develop a solution for the calibration parameters
that does not require iteration [17]. We define center variables, indicated by an
overbar, and centered variables, indicated by a breve, as follows:

N�2 �
 

NX
kD1

��2
k

!�1
(6.135a)

NL � N�2
NX
kD1

��2
k Lk; MLk � Lk � NL (6.135b)

Ny � N�2
NX
kD1

��2
k yk; Myk � yk � Ny (6.135c)

Nv � N�2
NX
kD1

��2
k vk; Mvk � vk � Nv (6.135d)

N� � N�2
NX
kD1

��2
k �k; M�k � �k � N� (6.135e)

The center variables and centered variables have the measurement models

Ny D NL x0true � kb.x0true
/k2 C Nv (6.136a)

Myk D MLkx0true C Mvk (6.136b)
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Note that Eq. (6.136b) is now linear in x0true, so linear least squares can be employed.
The centering process has introduced correlations among the noise terms Mvk ,5 but

these are generally ignored in practice, giving the centered estimate, OMx0
and its

approximate covariance, MP 0, as [2]

MP 0 D
 

NX
kD1

��2
k
MLTk MLk

!�1
(6.137a)

OMx0 D MP 0
NX
kD1

��2
k . Myk � M�k/ MLTk (6.137b)

Since the centered solution is linear, a sequential formulation can be derived to
provide realtime estimates. First, the sequential formulas for the averaged quantities
are given by

NLkC1 D 1

�2kC1 C N�2k
�
�2kC1 NLk C N�2kLkC1

	
(6.138a)

NykC1 D 1

�2kC1 C N�2k
�
�2kC1 Nyk C N�2kykC1

	
(6.138b)

N�kC1 D 1

�2kC1 C N�2k
�
�2kC1 N�k C N�2k�kC1

	
(6.138c)

where

N�2kC1 D
� N��2
k C ��2

kC1
	�1

(6.139)

Next, the following centered variables are defined:

MLkC1 � LkC1 � NLkC1 (6.140a)

MykC1 � ykC1 � NykC1 (6.140b)

M�kC1 � �kC1 � N�kC1 (6.140c)

Finally, the sequential formulas for the centered estimate of OMx0
and covariance MP 0

are given by

KkC1 � MP 0
k
MLTkC1

 MLkC1 MP 0
k
MLTkC1 C �2kC1

��1
(6.141a)

OMx0
kC1 D OMx

0
k CKkC1


MykC1 � M�kC1 � MLkC1 OMx0

k

�
(6.141b)

5Note, in particular, that
PN

kD1 �
�2
k Mvk D 0.
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MP 0
kC1 D .I9 �KkC1 MLkC1/ MP 0

k (6.141c)

Note that only an inverse of a scalar quantity is required in this process, which can
be initialized using a small batch of data. Also, there is an approach for determining
�2kC1 that uses the previous estimate in Eq. (6.125b).

6.4.3 The TWOSTEP Algorithm

The second step of the TWOSTEP algorithm uses a nonlinear maximum likelihood
minimization to find the optimal estimate of x0true. The first step computes the
centered solution to initialize the nonlinear least squares iteration process. The data-
dependent part of the negative log-likelihood function to be minimized in the second
step is:

J.x0true
/ D 1

2

NX
kD1

�
1

�2k
.yk � Lkx0true C kb.x0true

/k2 � �k/2 C log �2k

�
(6.142)

The partial derivative of h.x0/ � Lkx0 � kb.x0/k2 with respect to x0 is required
for the nonlinear least squares iterations. The partial of Lkx0 is simply given by LTk .
The partial derivatives of kb.x0/k2 are given by

@kb.x0/k2
@cm

D 2Œ.I3 CE/�1c�m (6.143a)

@kb.x0/k2
@Emn

D �.2 � ımn/Œ.I3 CE/�1c�mŒ.I3 CE/�1c�n (6.143b)

where Œ.I3CE/�1c�m is themth element of .I3CE/�1c. As mentioned previously,
the least squares solution process typically ignores the nonlinear dependence of �2k
on the unknown parameters.

Once estimates Oc and OE for ctrue and E true are found, the estimates Ob and OD for
btrue and Dtrue can be determined using Eqs. (6.133) and (6.134). Define

Ox �
h ObT ODT

iT
(6.144a)

OD � � OD11
OD22
OD33
OD12
OD13
OD23

�T
(6.144b)

The covariance associated with Ox, denoted P , must be computed from P 0, the
covariance of Ox0, which is given by Eqs. (12.98) and (12.99) as the inverse of the
Fisher information matrix. The conversion to P is computed by

P D @. Ob; OD/
@.Oc; OE/ P

0
"
@. Ob; OD/
@.Oc; OE/

#T
(6.145)
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Note that in actuality the true variables should be used instead of the estimated ones
in Eq. (6.145). However, since the true variables are unknown the estimated ones are
used instead. The partials can be computed using

@. Ob; OD/
@.Oc; OE/ D

"
@.Oc; OE/
@. Ob; OD/

#�1
D
�
I3 C OD McD. Ob/
06�3 MED. OD/

��1
(6.146a)

McD. Ob/ D

2
64
Ob1 0 0 Ob2 Ob3 0
0 Ob2 0 Ob1 0 Ob3
0 0 Ob3 0 Ob1 Ob2

3
75 (6.146b)

MED. OD/ D 2 I6 C

2
66666664

2 OD11 0 0 2 OD12 2 OD13 0

0 2 OD22 0 2 OD12 0 2 OD23

0 0 2 OD33 0 2 OD13 2 OD23

OD12
OD12 0 OD11C OD22

OD23
OD13

OD13 0 OD13
OD23

OD11C OD33
OD12

0 OD23
OD23

OD13
OD12

OD22C OD33

3
77777775

(6.146c)

A strategy to handle the dependence of �2k on the parameters is to first assume btrue

and Dtrue are zero to compute �2k and employ the nonlinear least squares iteration
process. Then use the estimates of btrue andDtrue to determine a new �2k and employ
another nonlinear least squares iteration process. This refinement strategy continues
until the estimates no longer change. In many cases this refinement strategy needs
only one iteration.

Example 6.3. In this example, results of the TWOSTEP and centered formulations
are shown using simulated data. The simulated spacecraft is modeled after the
TRMM spacecraft. This is an Earth-pointing spacecraft (rotating about its y-axis)
in low-Earth orbit with an inclination of 35ı [3]. The geomagnetic field is simulated
using a 10th-order International Geomagnetic Reference Field (IGRF) model [20].
The magnetometer-body and geomagnetic-reference vectors for the simulated runs
each have a magnitude of about 50 micro-Tesla (�T). The measurement noise is
assumed to be white and Gaussian, and the covariance is taken to be isotropic with
a standard deviation of 0.05 �T. The measurements are sampled every 10 s over an
8-h span. The true values for the bias b and elements of the D matrix are shown in
Table 6.4. Large values for the biases are used to test the robustness of the centered
and TWOSTEP algorithms.

One thousand runs have been executed, which provide a Monte Carlo simulation.
Shown in Table 6.4 are the averaged batch solutions given by the TWOSTEP and
centered algorithms, each with their computed 3� bounds. Both the centered and
TWOSTEP algorithms do a good job at estimating all parameters in the mean sense,
but the centered algorithm has larger variations than the TWOSTEP algorithm.
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Table 6.4 Results using
simulated magnetic field data

Parameter Truth Centered TWOSTEP

b1 5 �T 4:9972˙ 0:3373 4:9983˙ 0:0445

b2 3 �T 3:0157˙ 0:2549 2:9841˙ 0:0525

b3 6 �T 5:9955˙ 0:5447 5:9972˙ 0:0464

D11 0:05 0:0500˙ 0:0035 0:0500˙ 0:0002

D22 0:10 0:1001˙ 0:0023 0:0994˙ 0:0020

D33 0:05 0:0500˙ 0:0094 0:0500˙ 0:0003

D12 0:05 0:0499˙ 0:0027 0:0499˙ 0:0010

D13 0:05 0:0499˙ 0:0054 0:0499˙ 0:0002

D23 0:05 0:0499˙ 0:0045 0:0499˙ 0:0010
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Fig. 6.5 (a) Centered and (b) TWOSTEP bias estimates

This can also be seen in Fig. 6.5, which plots the bias estimates for each Monte
Carlo run. Results using colored noise, which is more realistic, can be found in [1].

6.4.4 Extended Kalman Filter Approach

This section presents an EKF to determine the calibration parameters in real
time [9]. An advantage of this formulation over the sequential centered approach
is that it computes Ob and OD directly without a conversion from Oc and OE. Since the
parameters to be estimated are constant, the state dynamic model is POx.t/ D 0, where
Ox is the state vector defined by Eq. (6.144). The measurement model of Eq. (6.123)
is written as yk D hk.xtrue/C vk , where using Eq. (6.126) gives

hk.xtrue/ D �STk Etrue.Dtrue/C 2BTk .I3 CDtrue/btrue � kbtruek2 (6.147)

Since no process noise appears in the state model, the updated quantities (state and
covariance) are given by their respective propagated quantities. The EKF equations,
which can be found in Chap. 12, then reduce to
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OxkC1 D Oxk CKkŒykC1 � hkC1.Oxk/� (6.148a)

PkC1 D ŒI9 �KkHkC1.Oxk/�Pk (6.148b)

Kk D PkHT
kC1.Oxk/

�
HkC1.Oxk/PkHT

kC1.Oxk/C �2kC1.Oxk/
��1

(6.148c)

where P is the covariance of the estimated parameters for btrue and Dtrue. The state
dependence of the measurement variance is shown through Eq. (6.125b). The 1 � 9
measurement sensitivity matrix H.x/ is given by

H.x/ � @h.x/
@x
D �2BT .I3 CD/ � 2bT �STMED. OD/C 2J

�
(6.149)

where S is defined by Eq. (6.126c), MED. OD/ by Eq. (6.146c), and

J � �B1b1 B2b2 B3b3 B1b2 C B2b1 B1b3 C B3b1 B2b3 C B3b2
�

(6.150)

The sensitivity matrix H.Ox/ in the EKF evaluates H.x/ at its current estimate, and
the notations hkC1.Oxk/, HkC1.Oxk/, and �2kC1.Oxk/ denote an evaluation at the k C 1
time-step measurement using BkC1 and at the k time-step estimate using Oxk .

6.4.5 TRACE Spacecraft Results

In this section, EKF results using real data from the Transition Region And Coronal
Explorer (TRACE) spacecraft are shown. TRACE is in a Sun-synchronous low-
Earth orbit. The data collected for the spacecraft is given during an inertial pointing
mode. The errors associated with the geomagnetic field model are typically spatially
correlated and may be non-Gaussian in nature [6]. This violates the assumptions for
all the estimators shown in this text. We still assume that the measurement noise is
white and Gaussian, but the standard deviation is now increased to a value of 0.3
�T, which bounds the errors in a practical sense. The measurements are sampled
every 3 s over a 6-h span.

The EKF initializes every component of the state vector to zero at time t D 0.
The initial covariance matrix is diagonal, given by

P0 D blkdiag .ŒI3 0:0001I6�/ .�T/2 (6.151)

where blkdiag denotes a block diagonal matrix of appropriate dimension.
Figure 6.6a shows EKF estimates for the bias vector. Figure 6.6b shows the 3�
bounds for the bias estimates. Note that the bias estimates with the larger 3�
bounds have greater variability, which is due to the relative observability between
parameters (the second bias is the least observable parameter in this case). Similar
results are obtained for the D matrix parameters.
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Fig. 6.6 TRACE bias estimates and 3� bounds. (a) EKF bias estimates. (b) EKF 3� bounds
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Fig. 6.7 Norm residual using
real TRACE data

An investigation of the residuals between the norm of the estimated vector, using
the uncalibrated and calibrated body vectors, and the geomagnetic-reference vector
is useful to check the consistency of the results. A plot of these residuals is shown
in Fig. 6.7. A spectrum analysis shows the presence of sinusoidal variations with
periods equivalent to the orbital period (� 90 min) and higher-order harmonics
(see [6] for a model of this process). Clearly, the uncalibrated results have higher
residuals than the calibrated results. This shows the power of using an onboard
calibration algorithm that can be executed in real time.

Problems

6.1. Derive the relations in Eq. (6.33).

6.2. Derive the measurement sensitivity matrix in Eq. (6.66).

6.3. Prove that Eq. (6.79) is a good approximation to Eq. (6.78) if 	 is very close
to Atruer.
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Table 6.5 Orbital elements for GPS satellites

GPS Orbital elements

1 a D 26;560 km, e D 2:6221� 10�3, M0 D �82:277 deg, i D 55:037 deg
˝0 D 46:492 deg, P̋ D �4:4332� 10�7 deg/s, ! D 24:008 deg

2 a D 26;561 km, e D 1:2955� 10�2, M0 D �38:066 deg, i D 53:808 deg
˝0 D 44:973 deg, P̋ D �4:5511� 10�7 deg/s, ! D �144:31 deg

3 a D 26;561 km, e D 1:6708� 10�2, M0 D �27:429 deg, i D 53:692 deg
˝0 D �22:198 deg, P̋ D �4:8392� 10�7 deg/s, ! D 77:836 deg

4 a D 26;560 km, e D 1:0645� 10�2, M0 D 154:02 deg, i D 53:751 deg
˝0 D 45:899 deg, P̋ D �4:5708� 10�7 deg/s, ! D 61:387 deg

5 a D 26;561 km, e D 3:5214� 10�3, M0 D 89:435 deg, i D 54:277 deg
˝0 D 106:11 deg, P̋ D �4:6624� 10�7 deg/s, ! D 21:164 deg

6 a D 26;560 km, e D 8:3880� 10�3, M0 D 78:699 deg, i D 54:067 deg
˝0 D �17:551 deg, P̋ D �4:7738� 10�7 deg/s, ! D �10:890 deg

6.4. The state transition matrix obeys the following relationships:

˚.t; t/ D 0
d

dt
˚.t; �/ D F.t/˚.t; �/

Prove that the discrete error-state transition matrix in Eq. (6.83) obeys these
relationships.

6.5. Prove that ˚11 defined by Eq. (6.83b) is an orthogonal matrix.

6.6. Reproduce the simulation results of Example 6.2 using Murrell’s approach.

6.7. In this problem you will develop an EKF program for attitude estimation using
GPS phase difference measurements discussed in Sect. 5.9. First, propagate six GPS
satellites using the algorithm in Table 4.1 with orbital elements given in Table 6.5
and a time of applicability given by ta D 61;440 s. Next, create the GPS receiver
spacecraft orbit in GCI coordinates using the algorithm in Table 10.1 with the
following orbital elements: a D 6777:3 km, e D 1:584 � 10�4, M0 D 93:4312ı,
i D 34:9654ı, ˝ D 346:4609ı, and ! D 266:6234ı. Convert this GCI-based
orbit into ECEF coordinates using Eq. (2.67) with an epoch of January 5, 2014 at
17:03:47. Use an interval of 0.1 s with a total run time of 600 s for both the GPS
satellites and the receiver spacecraft. Then, create sightline vectors using Eq. (4.23).

Assuming an initial quaternion of qtrue
0 D p2=2 � Œ0 1 0 1�T , propagate the

attitude using an angular velocity of !.t/ D =180 � Œ0 0 0:1�T rad/s for all time.
Create synthetic phase difference measurements using the following equation:

zij D bTi A.q
true/sj C vij
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where vij is a zero-mean Gaussian noise process with standard deviation of
0:026 cm. The three baseline vectors are given by

b1 D
�
100 0 0

�T
cm

b2 D
�
0 100 0

�T
cm

b3 D
�
100 100 0

�T
cm

Create synthetic gyro measurements using the model shown in Eq. (4.54) with S D
0, �u D

p
10 � 10�10 rad/s3=2, and �v D

p
10 � 10�7 rad/s1=2. Sample the gyro

measurements using an interval of 0.1 s. The initial bias for each axis is given by
0.1 deg/h. The initial covariance for the attitude error is set to .1=3/2 deg2, and the
initial covariance for the gyro drift is set to 12 (deg/h)2. Converting these quantities
to (rad/s)2 gives the following initial attitude and gyro drift covariances for each
axis: P a

0 D 0:3385�10�4 rad2 and P b
0 D 0:2350�10�10 .rad/s/2, so that the initial

covariance is given by

P0 D diag
�
P a
0 P

a
0 P

a
0 P

b
0 P

b
0 P

b
0

�

Use the discrete-time covariance propagation in Eq. (12.132) with $k D I6, and ˚k
and Qk given by Eqs. (6.83) and (6.93), respectively. The initial attitude condition
in the EKF is given by the true quaternion. The initial gyro bias conditions in the
EKF are set to zero. Plot the attitude estimate errors along with their respective 3�
bounds and gyro bias estimates obtained from the EKF simulation results.

6.8. Another linearization approach for the MEKF involves defining the attitude
errors in inertial space by using [16]

qtrue D Oq˝ ıq.ı#/

Show that the linearized F.t/ andG.t/matrices for the mission mode Kalman filter
are given by

F.t/ D
�
03�3 �AT . Oq/
03�3 03�3

�
; G.t/ D

��AT . Oq/ 03�3
03�3 I3

�

Derive the new Hk.Ox�
k / matrix and quaternion update equation for this approach.

Redo Example 6.2 using this new filter and compare the results to the standard
MEKF given in Table. Note that Eq. (6.11) is used to compute the attitude errors
for both filters. So the attitude portion of the error-covariance for the inertial-space
MEKF must be rotated from inertial space to body space for this comparison.

6.9. Derive the discrete error-state transition matrix from the matrix F.t/ given in
Problem 6.8. Also, derive the discrete-time covariance using Eq. (6.84) from your
derived discrete error-state transition matrix and the matrix G.t/ in Problem 6.8.
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6.10. In this exercise you will use the MEKF to estimate the attitude from TAM
and Sun sensors as well as gyro measurements. The first step involves determining
the position of the spacecraft. Assume the following orbital elements: a D
6777:2745 km, e D 0:0001584, M0 D 93:4312ı, i D 34:9654ı, ˝ D 346:4609ı,
and ! D 266:6234ı. The epoch is March 31, 2011 at 02:32:41. Determine the
position and velocity of the spacecraft using Table 10.1 with a time interval of 10 s
and a total run time of 8 h. Next, compute the reference magnetic field using the
dipole model in Eq. (11.5) and the reference Sun vector and Sun availability using
the methods shown in Sect. 11.3. The true initial attitude is given by Eq. (2.79). The
constant angular velocity vector is ! D Œ0 � 1:13156 � 10�3 0�T rad/s.

Simulate TAM sensor noise using a Gaussian white-noise process with a mean of
zero and a standard deviation of 50 nT per axis. Here is assumed that one Sun sensor
is used and its axes are aligned with the body axes of the spacecraft. The Sun sensor
noise is also modeled by a Gaussian white-noise process with a mean of zero
and a standard deviation of 0.05ı per axis. Simulate gyro measurements using
Eqs. (4.31) and (4.32) of Sect. 4.7.1, with �u D

p
10 � 10�10 rad/s3=2, and

�v D
p
10 � 10�7 rad/s1=2. The initial bias for each axis is given by 0.1 deg/h. The

initial covariance for the attitude error is set to .1=3/2 deg2 per axis, and the initial
covariance for the gyro drift is set to 12 (deg/h)2 per axis. Converting these quantities
to radians and seconds gives the following initial attitude and gyro drift covariances
for each axis: P a

0 D 0:3385 � 10�4 rad2 and P b
0 D 0:2350 � 10�10 .rad/s/2, so that

the initial covariance is given by

P0 D diag
�
P a
0 P

a
0 P

a
0 P

b
0 P

b
0 P

b
0

�

Use the discrete-time covariance propagation in Eq. (12.132) with $k D I6,
and ˚k and Qk given by Eqs. (6.83) and (6.93), respectively. All sensors are
sampled at 10-s intervals. Run the MEKF using the TAM, available Sun and gyro
measurements. Set the initial attitude estimate to the true quaternion and set all
initial bias estimates to zero. Plot the attitude errors along with their respective 3�
bounds, as well as the estimated gyro biases.

6.11. Perform the following quaternion multiplication in Eq. (6.33):

1

2

�
ı!

0

�
˝
�
ıq1W3
ıq4

�

and show the exact nonlinear differential equations for ı Pq1W3 and ı Pq4. Next, consider
the following error-MRP:

ıp D ıq1W3
1C ıq4

Take the time derivative of ıp, substitute in the quantities for ıq1W3, ıq4, and their
respective derivatives, in terms of ıp, to develop the exact nonlinear differential
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equation for ı Pp. Next using the approximation ıp � ı#=4, show that the first-order
equation for ı P# is given by Eq. (6.35).

6.12. In this exercise you will develop an MEKF based on the MRPs. Here it
is assumed that MRP measurements are given using the following discrete-time
measurement model:

p D vp ˝ ptrue D
�
1 � kptruek2	 vp C

�
1 � kvpk2

	
ptrue � 2 vp � ptrue

1C kptruek2kvpk2 � 2 vp � ptrue

where vp is a zero-mean Gaussian white-noise process with covariance Rp .
Assuming that the signal-to-noise ratio is large, show that this equation can be
approximated by

p � ptrue C NR vp

where

NR � �1 � kptruek2	 I3 C 2 Œptrue��C 2 .ptrue/ .ptrue/T

Therefore, the covariance of p, denoted by R, is given by R D NRRp NRT . The
multiplicative error-MRP is given by ıp D ptrue ˝ Op�1. The small angle approxi-
mation is given by ıp � ı#=4, where the kinematic equation for ı# is given by
Eq. (6.35). The mission mode multiplicative MRP propagation equations are given
in Table 6.3, replacing the quaternion kinematics with the MRP kinematics, given
by Eq. (3.24). Derive the multiplicative MRP update equation using a state vector

given by�OxC
k � Œı O#

CT
k � ǑCTk �T and the MRP measurement model shown above.

Next, program the MEKF MRP equations to estimate the attitude and gyro
biases from MRP measurements. The initial condition for the true MRP is given
by ptrue

0 D Œ0:3 0:1 � 0:5�T and the true angular rate for all time is given by
!true.t/ D Œ�0:2 0:2 � 0:192�T deg/s. Generate synthetic MRP measurements
using a covariance of Rp D .20=3;600/ � .=180/I3 and take MRP samples at 5-s
intervals. Simulate gyro measurements using Eqs. (4.31) and (4.32) of Sect. 4.7.1,
with �u D

p
10 � 10�10 rad/s3=2, and �v D

p
10 � 10�7 rad/s1=2. The initial bias

is given by ˇtrue
0 D Œ�1 2 � 3�T deg/h. Sample the gyro measurements at 0.5-s

intervals. Set the initial state estimate to zeros for both the MRPs and gyro biases.
Set the initial covariance matrix to

P0 D diagŒP a
0 P a

0 P a
0 P b

0 P b
0 P b

0 �

with P a
0 D 16 � 0:175 rad2 and P b

0 D 0:005 (rad/s)2. Use the discrete-time
covariance propagation in Eq. (12.132) with $k D I6, and ˚k and Qk given by
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Eqs. (6.83) and (6.93), respectively. Use a total simulation run time of 200 min. Plot
the attitude errors along with their respective 3� bounds, as well as the estimated
gyro biases.

6.13. This problem has two parts:

a) Derive Eq. (6.99b).
b) Derive the Q matrix in Eq. (6.105).

6.14. Prove Eq. (6.106) by mathematical induction.

6.15. Show that Eqs. (6.108) and (6.110) satisfy Eqs. (6.107).

6.16. Derive the relations in Eqs. (6.113) and (6.114).

6.17. Show that the dynamic model of Eq. (6.116) leads to the covariance propaga-
tion and update given by (6.115).

6.18. Derive the asymptotic limits in Eqs. (6.117)–(6.120).

6.19. Redo the simulation shown in Example 6.3. Pick various truth values for the
biases and Dij calibration parameters as well as various noise levels to assess the
robustness of the centered and TWOSTEP algorithms.
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Chapter 7
Attitude Control

7.1 Introduction

Spacecraft attitude control is essential to meet mission pointing requirements, such
as required science modes and thruster pointing requirements for orbital maneuvers.
Early spacecraft mission designs used passive spin stabilization to hold one axis
relatively fixed by spinning the spacecraft around that axis, usually the axis of
maximum moment of inertia. Spin stabilization was mostly used due to the limited
control actuation and lack of sophisticated computer technology to implement
complex control laws. Spin-stabilized spacecraft are very stable, but they have to
be sensitively balanced; every component has to be designed and located with
spacecraft balance in mind. This can be extremely difficult to accomplish to the
required accuracy. In most cases the last few weights are added and adjusted
only after actual flight hardware is delivered and installed, and the spacecraft is
experimentally spin tested. Allowances must also be made for everything onboard
that can move during flight.

In the modern era advancements in sensors, actuators, and computer processors
allow for three-axis stabilized spacecraft designs, although spinners are still used to
this day for many missions. Attitude control law theory also has been extensively
studied and advanced, allowing for guaranteed control stability even with nonlinear
attitude dynamics. The control of spacecraft for large angle slewing maneuvers
poses a difficult problem, however. These difficulties include the highly nonlinear
characteristics of the governing equations, control rate, and saturation constraints
and limits, and incomplete state knowledge due to sensor failure or omission.
The control of spacecraft with large angle slews can be accomplished by either open-
loop or closed-loop schemes. Open-loop schemes usually require a pre-determined
pointing maneuver and are typically determined using optimal control techniques,
which involve the solution of a two-point boundary value problem (e.g. the time
optimal maneuver problem [37]). Open-loop schemes are sensitive to spacecraft

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__7,
© Springer Science+Business Media New York 2014
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parameter uncertainties and unexpected disturbances [47]. Closed-loop systems
can account for parameter uncertainties and disturbances, and thus provide a more
robust design methodology.

For many years now, much effort has been devoted to the closed-loop design of
large angle slews. In [50] a number of simple control schemes are derived using
quaternion and angular velocity (rate) feedback. Asymptotic stability is shown
by using a Lyapunov function analysis for all cases. Reference [45] expands
upon these formulations by deriving simple control laws based on both a Gibbs
vector parameterization and a modified Rodrigues parameterization, each with rate
feedback. Lyapunov functions are shown for all the controllers developed in [45]
as well. Other full state feedback techniques have been developed that are based
on variable-structure (sliding-mode) control, which uses a feedback linearizing
technique and an additional term aimed at dealing with model uncertainty [41]. This
type of control has been successfully applied for large angle maneuvers using a
Gibbs vector parameterization [18], a quaternion parameterization [15, 46], and a
modified Rodrigues parameterization [13]. Another robust control scheme using
a nonlinear H1 control methodology has been developed in [22]. This scheme
involves the solution of Hamilton-Jacobi-Isaacs inequalities, which essentially
determines feedback gains for the full state feedback control problem so that
the spacecraft is stabilized in the presence of uncertainties and disturbances.
Another class of controllers involves adaptive techniques, which update the model
during operation based on measured performances (e.g. see [41]). An adaptive
scheme which estimates external torques by tracking a Lyapunov function has been
developed by [35]. This method has been shown to be very robust in the presence of
spacecraft modeling errors and disturbances.

The aforementioned techniques all utilize full state knowledge (i.e. attitude and
rate feedback). The problem of controlling a spacecraft without full state feedback
is more complex. The basic approaches used to solve this problem can be divided
into methods which estimate the unmeasured states using a filter algorithm and
methods which develop control laws directly from output feedback. Filtering
methods of Chap. 6, such as the extended Kalman filter, have been successfully
applied on numerous spacecraft systems without the use of rate-integrating gyro
measurements (e.g. see [9, 11, 14]). An advantage of these methods is that the
attitude may be estimated by using only one set of vector attitude observations
(such as magnetometer observations). However, these methods are usually much
less accurate than methods that use gyro measurements. A more direct technique has
been developed in [25], which solves the attitude problem without rate knowledge.
This method is based on a passivity approach, which replaces the rate feedback by
a nonlinear filter of the quaternion. A model-based filter reconstructing the angular
velocity is not needed in this case.

This chapter presents the fundamental concepts for modern spacecraft control
designs. First, attitude control laws are developed using both external torques
and reaction wheels for both regulation and tracking cases. An example from a
real mission, the Wilkinson Microwave Anisotropy Probe (WMAP), is shown for
attitude tracking. Next, attitude thruster control is discussed using pulse-width
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pulse-frequency modulation. This is followed by attitude control using magnetic
torquers for both detumbling and momentum dumping. Then, the effects of noise
on the control systems are discussed and mitigation approaches are shown. Finally,
an actual attitude control system design, based on the SAMPEX spacecraft, is
shown. This spacecraft design is useful to show the combined effects of using filters
shown in Chap. 6 with linear controllers to meet mission designs.

7.2 Attitude Control: Regulation Case

Regulation control is defined as bringing the attitude to some fixed location (usually
the identity quaternion) and the angular velocity to zero. The quaternion attitude
kinematics and Euler’s rotational equation of motion are given in Chap. 3 (removing
superscripts here for brevity):

Pq D 1

2
�.q/! D 1

2
˝.!/q (7.1a)

J P! D �Œ!��J!C L (7.1b)

The goal is to drive the actual quaternion to some commanded and constant
quaternion denoted by qc . This requires that the angular velocity approach zero.
The error quaternion is given by

ıq �
�
ıq1W3
ıq4

�
D q˝ q�1

c (7.2)

where

ıq1W3 D �T .qc/q (7.3a)

ıq4 D qT qc (7.3b)

Taking the time derivative of Eq. (7.2) gives

ı Pq D Pq˝ q�1
c (7.4)

Substituting Eq. (7.1a) into Eq. (7.4) and using Eq. (7.2) leads to

ı Pq D 1

2
˝.!/ıq (7.5)

Using the definition of ˝.!/, the differential equations for ıq1W3 and ıq4 are
specifically given by
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ı Pq1W3 D 1

2
Œıq1W3��!C 1

2
ıq4! (7.6a)

ı Pq4 D �1
2
ıqT1W3! (7.6b)

The goal of the controller is to drive ! to zero and ıq to the identity quaternion
Iq D Œ0 0 0 1�T .

Several feedback controllers are presented in [50]. The first is given by

L D �kp ıq1W3 � kd ! (7.7)

where kp and kd are positive scalar gains. Substituting Eq. (7.7) into Eq. (7.1b) gives
the closed-loop system governed by Eq. (7.5) and

P! D �J�1 �Œ!��J!C kpıq1W3 C kd!
	

(7.8)

The only equilibrium point is ŒıqT1W3 !T �T D 0.
Stability is proven using Lyapunov’s direct method. Reference [50] uses a

difference between the actual and command quaternions in the definition of the
candidate Lyapunov function. Here, a multiplicative approach is employed, which
leads to the same result as in [50] but is more intuitive in terms of the quaternion
error kinematics. Define the following candidate Lyapunov function:

V D 1

4
!T J!C 1

2
kp ıqT1W3ıq1W3 C 1

2
kp .1 � ıq4/2 � 0 (7.9)

Note that V D 0 when ! D 0 and ıq D Iq , which is the equilibrium point. The
time derivative of V is given by

PV D 1

2
!T J P!C kp ıqT1W3ı Pq1W3 � kp .1 � ıq4/ı Pq4 (7.10)

Substituting Eqs. (7.6) and (7.8) into Eq. (7.10) gives

PV D �1
2

�
!T ıq1W3

	 �
kp C kpıq4 � kp.1C ıq4/

� � 1
2
kd !

T!

D �1
2
kd !

T! � 0 (7.11)

Thus, the closed-loop system is stable since PV � 0.
Asymptotic stability can be proven using LaSalle’s theorem (see Sect. 12.2.2).

The equality in Eq. (7.11) is given when ! D 0, where ıq1W3 can be anything.
We must check that the system cannot remain in a state where PV D 0 while
ıq1W3 ¤ 0. Equation (7.11) guarantees that limt!1! D 0. The closed-loop
dynamics in Eq. (7.8) shows that this asymptotic condition can only be achieved
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if limt!1 ıq1W3 D 0 also. Thus, this control law asymptotically reorients the
spacecraft to the desired attitude from an arbitrary initial orientation. Note that ıq4
can be˙1, but this does not matter since both signs produce the same attitude.

However, the control law in Eq. (7.7) does not guarantee that the shortest path is
provided to the final orientation. This becomes an issue when the fourth component
of the initial error quaternion is negative. Reference [50] shows two other control
laws that overcome this issue. One of them is a slight modification of Eq. (7.7),
given by

L D �kp sign.ıq4/ıq1W3 � kd ! (7.12)

Note that if ıq4 < 0 then a positive feedback term is introduced, which provides
the shorter path to reach the desired equilibrium point. Thus Eq. (7.12) is always
preferred over Eq. (7.7) unless ıq4 D 0 exactly, which is not a concern for practical
applications.

The control law in Eq. (7.7) is linear in the state. Nonlinear control laws can also
be used. Consider the following control law:

L D �kp ıq1W3 � kd .1˙ ıqT1W3ıq1W3/! (7.13)

This law also produces a globally asymptotic stable response, which can be proven
using Lyapunov’s direct method (which is left as an exercise for the reader).
When the minus sign is used then by the quaternion unity constraint we have
1 � ıqT1W3ıq1W3 D ıq24 . The shortest distance control law can be achieved by using

L D �kp sign.ıq4/ıq1W3 � kd .1˙ ıqT1W3ıq1W3/! (7.14)

The aforementioned control laws can also be used with reaction wheels. For the
reaction-wheel-only case Eq. (3.147) expresses Euler’s rotational equation as

J P! D �Œ!��.J!C h/ � Ph (7.15)

where J now includes the transverse inertia of the wheels, h � Hw
B is the

wheel angular momentum, and Ph is the wheel torque. Note that the total angular
momentum, J!C h, is conserved as discussed in Sect. 3.3.5.1. An equivalent but
more useful form of Eq. (7.15) for control purposes is given by

J P! D �Œ!��J!C NL (7.16a)

Ph D �Œ!��h � NL (7.16b)

where NL is an effective wheel torque input. Adding Eqs. (7.16a) and (7.16b) shows
that these two equations are consistent with Eq. (7.15). Now define the following
control laws for the wheel torques:
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Fig. 7.1 (a) Quaternion errors and (b) control torques

NL D �kp sign.ıq4/ıq1W3 � kd ! (7.17a)

NL D �kp sign.ıq4/ıq1W3 � kd .1˙ ıqT1W3ıq1W3/! (7.17b)

Using the candidate Lyapunov function in Eq. (7.9) proves that these control laws
provide asymptotic stability with reaction wheels.

Example 7.1. In this example the control law in Eq. (7.12) is used to perform a
reorientation maneuver with large initial errors. The inertia matrix of the spacecraft
is given by

J D
2
4
10000 0 0

0 9000 0

0 0 12000

3
5 kg-m2

The initial quaternion is given by q.t0/ D Œ0:6853 0:6953 0:1531 0:1531�T and
the initial angular velocity is given by !.t0/ D Œ0:5300 0:5300 0:0530�T deg/s.
The desired quaternion is the identity quaternion. The control gains are set to
kp D 50 and kd D 500. A plot of the quaternion errors is shown in Fig. 7.1a. The
fourth error-quaternion component approaches 1 while the other three components
approach zero. The control torques are shown in Fig. 7.1b. Note the large control
torques at the beginning of the maneuver, which are due to the large initial errors.
From these plots it is clear that the control law provides a reorientation maneuver to
the desired attitude.

Example 7.2. In this example the control law in Eq. (7.17a) is used to perform a
reorientation maneuver using reaction wheels. The inertia matrix of the spacecraft
is given by
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Fig. 7.2 (a) Quaternion errors and (b) wheel momenta

J D
2
4
6400 �76:4 �25:6
�76:4 4730 �40
�25:6 �40 8160

3
5 kg-m2

The initial quaternion is given by q.t0/ D
p
2=2 Œ1 0 0 1�T and the initial angular

velocity is given by !.t0/ D Œ0:01 0:01 0:01�T rad/s. The desired quaternion is
the identity quaternion. The initial wheel momentum is set to h.t0/ D 0. The gains
are set to kp D 10 and kd D 150. A plot of the quaternion errors is shown in
Fig. 7.2a. The fourth error-quaternion component approaches 1 while the other three
components approach zero. The wheel momenta are shown in Fig. 7.2b. Note that
wheel momenta do not decrease to zero once the desired attitude is achieved.
This is due to the conservation of momentum in the spacecraft. For this case,
since h.t0/ D 0 then the norm of the momentum is kJ!.t0/k D 112:4586Nms.
The angular velocity of the spacecraft still achieves its desired zero value at the
end of the maneuver and the momentum of the spacecraft is reoriented to perform
this maneuver. As before, from these plots it is clear that the control law provides a
reorientation maneuver to the desired attitude.

We next convert the momenta from this example to two specific implementations
of the four-wheel configurations discussed in Sect. 4.8.3, using the pseudoinverses
of the distribution matrices:

W4 D 1p
2

2
4
1 �1 0 0

1 1 1 1

0 0 1 �1

3
5 ; WN D

2
4
1 0 0 1=

p
3

0 1 0 1=
p
3

0 0 1 1=
p
3

3
5

Plots of the converted momenta are shown in Fig. 7.3. Clearly, the different
configurations produce different momenta for each wheel. The Euclidean norm of
the wheel momenta for the pyramid configuration at the final time is 96.8044 Nms,
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Fig. 7.3 Comparison between wheel configurations. (a) Pyramid configuration. (b) NASA stan-
dard configuration

while the norm of the wheel momenta for the NASA standard configuration at the
final time is 111.8695 Nms.

7.3 Attitude Control: Tracking Case

The previous section described approaches to maneuver a spacecraft to a fixed
attitude while driving the angular velocity to zero. This has applications to inertially
pointing spacecraft like the Hubble Space Telescope. This section discusses various
forms of attitude tracking that are used to control the spacecraft to follow a desired
time-varying trajectory. Note that tracking also encompasses regulation by simply
setting the desired attitude to a constant and the desired angular velocity to zero.
Optimal control methods that minimize a user-defined cost function are based on
solving two-point boundary value problems [21]. They provide the control trajectory
over the desired time interval and cannot be executed in real time. They are very
useful for analysis purposes but less useful for real spacecraft mission designs,
e.g. time-optimal control to provide rapid re-pointing of the spacecraft [37].

Feedback methods are more suitable for actual attitude tracking control applica-
tions because they can be executed in real time. Feedback-based attitude tracking
control is a widely studied topic. Most controllers are model based, e.g. they
typically require knowledge of the inertia matrix. No one controller can work for
every spacecraft mission objective in terms of pointing and jitter requirements.
Some are more sensitive to noise effects and/or modeling errors, while others are
sensitive to external torque disturbances, such as torques induced by solar radiation
pressure. So called “robust” controllers have been developed to mitigate these
sensitivities. Here, the use of variable-structure (sliding-mode) control is shown as
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an introduction to spacecraft tracking. Sliding-mode control is robust to arbitrary
model parameter inaccuracies, but comes at the price of possibly high control
activity [41]. Section 12.2.3 presents a brief overview of sliding-mode control.

The sliding-mode controller developed in [15] is shown here for both the case
of external torques and internal reaction wheels. The dynamic equation is given by
Eq. (7.1b) for the external torque case and by Eq. (7.16) for the reaction wheel case.
First we must select the sliding surface. An obvious choice is to use a form that is
similar to the right side of Eq. (7.7). Here the difference between the actual angular
velocity and the commanded angular velocity, denoted by !c , is used so that the
sliding surface vector is given by

s D .! �!c/C k ıq1W3 (7.18)

where k is some positive scalar constant. Note that here the commanded quaternion
qc may be time varying, but it must be consistent with the commanded angular
velocity, i.e. qc must be derived from the quaternion kinematics driven by !c .
If s D 0 then the actual attitude and angular velocity will track the commanded
inputs. Reference [15] shows that Eq. (7.18) can actually be derived from optimal
control theory.

Taking the time derivative of Eq. (7.18) gives

Ps D . P! � P!c/C k ı Pq1W3 (7.19)

Evaluating Eq. (6.32) with ! � !true and !c � O! gives an expression for ı Pq1W3:

ı Pq1W3 D 1

2
ıq4.! �!c/C 1

2
ıq1W3�.!C!c/ (7.20)

Substituting Eqs. (7.1b) and (7.20) into Eq. (7.19) gives

Ps D �J�1Œ!��J!C J�1Le � P!c C k
2
Œıq4.! �!c/C ıq1W3�.!C!c/� (7.21)

Note that L is replaced with Le because the equivalent control law must first be
derived, as explained in Sect. 12.2.3. As also explained in that section the time
derivative of the Lyapunov function in Eq. (12.66) requires that Ps D 0. Using this
condition gives the following equivalent control law:

Le D J


k

2
Œıq4.!c �!/ � ıq1W3�.!C!c/�C P!c

�
C Œ!��J! (7.22)

As explained in Sect. 12.2.3, a discontinuous term is added across the sliding surface
to account for model uncertainties. In order to reduce the resulting chattering phe-
nomenon, a saturation function is used instead of the signum function. The resulting
control law will provide the sliding-mode attitude tracking law, however it is not
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guaranteed to reorient the spacecraft in the shortest distance. Reference [15] proves
that the following sliding-mode control law reorients the spacecraft in the shortest
distance:

s D .! �!c/C k sign.ıq4/ıq1W3 (7.23a)

L D J


k

2
Œjıq4j.!c �!/ � sign.ıq4/ ıq1W3�.!C!c/�C P!c �G Ns

�
C Œ!��J!

(7.23b)

where G is a positive definite matrix and the i th component of Ns is given by

Nsi D sat.si ; 
i /; i D 1; 2; 3 (7.24)

where 
i is a positive quantity and si is the i th component of the sliding vector given
by Eq. (7.23a). The saturation function is defined by

sat.si ; 
i / �

8̂
<̂
ˆ̂:

1 for si > 
i

si =
i for jsi j � 
i
�1 for si < �
i

(7.25)

Note that Ns drives the system to the sliding surface. If reaction wheels are used
to control the spacecraft, then as in Sect. 7.2 the same control law is used with NL
replacing L.

The robustness of the sliding-mode controller is now shown. We first define the
following bounded modeling errors for the inertia matrix:

J�1 D OJ�1 C ıJ�1 (7.26)

where OJ is the nominal inertia matrix. Next, neglecting the gyroscopic term in
Euler’s rotational equation and adding an external disturbance input yields

P! D J�1LC J�1d (7.27)

where d denotes a bounded disturbance input. Under these conditions the time-
derivative of the sliding manifold can be approximated by

Ps D ıJ�1 OJ


k

2
Œjıq4j.!c �!/ � sign.ıq4/ ıq1W3�.!C!c/�C P!c �G Ns

�

� J�1 OJG NsC J�1d (7.28)

where it is assumed that the higher-order perturbations in the inertia matrix are
small. We also assume that the thickness of the boundary layer 
 and the gain G are
sufficiently large to keep the time derivative of the associated Lyapunov function
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negative definite in the presence of modeling errors and external disturbances.
Then the dynamics of the sliding manifold can be approximated by

Ps � �1


J�1 OJG sC J�1d (7.29)

Therefore, s will satisfy the inequality

ksk < k
 . OJG/�1k � kdkmax (7.30)

if the time derivative of the sliding manifold is small after all transients have
decayed. Equation (7.30) is valid using either external torques or reaction wheels
in the control system.

Example 7.3. In this example the sliding-mode controller is used to control the
attitude of the WMAP spacecraft using quaternion and angular velocity obser-
vations. The WMAP mission created a full-sky map of the cosmic microwave
background and measured its anisotropy with 0.3ı angular resolution in order to
answer fundamental cosmological questions such as the age of the universe, the
value of the Hubble constant, and the existence and nature of dark matter.

WMAP is in a Lissajous orbit [23] about the Earth-Sun L2 Lagrange point
with an approximately 180-day period (see Sect. 10.5). Because of its distance,
1.5 million km from Earth, this orbit affords great protection from the Earth’s
microwave emission, magnetic fields, and other disturbances, with the dominant
disturbance torque being solar radiation pressure. It also provides for a very stable
thermal environment and near 100 % observing efficiency, since the Sun, Earth,
and Moon are always behind the instrument’s field of view. In this orbit WMAP
sees a Sun/Earth angle between 2ı and 10ı. The instrument scans an annulus in
the hemisphere away from the Sun, so the universe is scanned twice as the Earth
revolves once around the Sun. Reference [27] presents an overview of the WMAP
attitude control system.

The spacecraft instruments are shown in Fig. 7.4. The spacecraft orbit and
attitude specifications are shown in Fig. 7.5. To provide the scan pattern, the
spacecraft spins about the z-axis at 0.464 rpm, and the z-axis cones about the Sun-
line at 1 rev/h. A 22:5ı ˙ 0:25ı angle between the z-axis and the Sun direction
must be maintained to provide a constant power input, and to provide constant
temperatures for alignment stability and science quality. The spacecraft’s attitude
is defined by a 3�1�3 Euler angle rotation relative to a rotating, Sun-referenced
frame. The three commanded Euler angles are �c , �c , and  c , and the desired states
for the observing mode are

P�c D 1 rev

h
D 0:001745 rad

s

�c D 22:5ı D 0:3927 rad

P c D 0:464 rpm D 0:04859 rad

s
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Fig. 7.4 WMAP spacecraft

The desired Euler angles for �c and c are determined by integrating the Euler rates.
The scan pattern can be simulated by first multiplying the transpose of the 3�1�3
attitude matrix, shown in Table 9.1, by the vector Œcos �c 0 sin �c�T , which gives
the following components:

a1 D cos�c cos �c cos c � sin�c cos2 �c sin c C sin�c sin2 �c

a2 D sin�c cos �c cos c C cos�c cos2 �c sin c � cos�c sin2 �c

a3 D cos �c sin �c.sin c C 1/
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The x and y coordinates are given by

x D a1

1C a3 ; y D a2

1C a3
Figure 7.6 shows the scan pattern for one complete precession (1 h), displayed in
ecliptic coordinates in which the ecliptic equator runs horizontally across the map.
The bold circle shows the path for a single spin (2.2 min).

The commanded quaternion is determined using

qc1 D sin

�
�c

2

�
cos

�
�c �  c
2

�

qc2 D sin

�
�c

2

�
sin

�
�c �  c
2

�

qc3 D cos

�
�c

2

�
sin

�
�c C  c

2

�
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qc4 D cos

�
�c

2

�
cos

�
�c C  c

2

�

The kinematic equation that transforms the commanded Euler rates to the com-
manded body rates is given by Eq. (3.41) with P�c D 0:

!c D
2
4
P�c sin �c sin c
P�c sin �c cos c

P c

3
5 rad

s

Its derivative, which is required for the sliding-mode controller, is given by

P!c D P�c P c
2
4

sin �c cos c
� sin �c sin c

0

3
5 rad

s2

The initial quaternion for the simulation test is given by

q.t0/ D Œ0 0 sin.˚=2/ cos.˚=2/�T ˝ qc.t0/

The initial angular velocity is set to !.t0/ D 0. Three reaction wheels are used to
control the spacecraft. The initial wheel momentum is set to h.t0/ D 0. The true
inertia matrix of the spacecraft is given by

J D
2
4
399 �2:81 �1:31
�2:81 377 2:54

�1:31 2:54 377

3
5 kg-m2
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The nominal (assumed) inertia matrix used in the controller is given by

OJ D
2
4
380 �2:81 �1:31
�2:81 360 2:54

�1:31 2:54 340

3
5 kg-m2

The following external disturbance is also added:

d D
2
4
0:005 sin.0:05 t/

0:003

0:005 cos.0:05 t/

3
5 Nm

The simulation uses the following parameters: ˚ D 60ı, k D 0:015, G D 0:15I3,
and 
 D 0:01. A plot of the angle errors is given in Fig. 7.7a. Convergence occurs
in about 20 min. The slight oscillations are due to the disturbance. A plot of the
angular velocity errors is shown in Fig. 7.7b, which clearly shows that the desired
angular velocity profile is achieved. The wheel momenta are shown in Fig. 7.7c.
Note that the total angular momentum for the spacecraft is zero because !.t0/ D 0
and h.t0/ D 0. Therefore any increase in J! causes an equal negative value
for h. Figure 7.7d presents plots of the upper bound given by Eq. (7.30) and the
actual norm of the sliding vector. This shows the effectiveness of using Eq. (7.30) to
accurately bound the sliding manifold errors.

7.3.1 Alternative Formulation

We now describe another tracking control law that we will use when we consider
the effects of noise [30]. First, define the following angular velocity difference:

ı! D ! � ıA!c (7.31)

where ıA D AATc . The time derivative of ıA is given by

ı PA D PAATc C A PATc D �Œ!��ıAC ıAŒ!c��
D �Œ!��ıAC ıAŒıAT .! � ı!/�� D �Œı!��ıA (7.32)

where Eq. (2.63) has been used. The corresponding error quaternion kinematics
equation is given by Eq. (7.5).

Taking the time derivative of Eq. (7.31) and left multiplying by the inertia matrix
gives

J ı P! D J P! � J ı PA!c � J ıA P!c (7.33)
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Fig. 7.7 WMAP simulation results. (a) Angle errors. (b) Angular velocity errors. (c) Wheel
momenta. (d) Slide norm and upper bound

Substituting Eqs. (7.1b) and (7.3.1) into Eq. (7.33), and after some simple algebraic
manipulations leads to the following dynamic equation:

J ı P! D ˙.ı!; !c; ıA/ı! � Œ.ıA!c/��J ıA!c � J ıA P!c C L (7.34)

where ˙.ı!; !c; ıA/ is the skew-symmetric matrix

˙.ı!; !c; ıA/ � Œ.J ı!/��CŒ.J ıA!c/���Œ.ıA!c/��J�J Œ.ıA!c/�� (7.35)

As with the sliding-mode control approach, !c can be any possible commanded
trajectory. A stabilizing control law is given by

L D Œ.ıA!c/��J ıA!c C J ıA P!c � kp ıq1W3 � kd ı! (7.36)

The stability proof for this control law is left as an exercise for the reader. Note that
when !c D 0 then Eq. (7.36) is identical to Eq. (7.7).
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7.4 Attitude Thruster Control

Previous sections have presented a theoretical framework for the use of external
torques to control the attitude. External-torque control is rarely used for fine-
pointing but is needed to dump momentum in order to prevent saturation of control
wheels, and is often used for initial attitude acquisition after launch and for safehold
modes to cope with reaction wheel failures. The only external means of applying
full three-axis external torques is by the use of thrusters. Magnetic torquers can
also generate torques, but not in all three axes simultaneously. Magnetic torquers
are often used for low-Earth orbits while thrusters are used for high-Earth orbits or
interplanetary missions where magnetic fields are weak and unpredictable. Use of
thrusters in autonomous safehold modes is dangerous, however, because thrusters
can impart a large amount of angular momentum to the system, which magnetic
control torques can remove only with great difficulty (if at all) after the thruster
propellant has been expended.

The most common attitude control method by thrusters uses pulse-width pulse-
frequency (PWPF) modulation. The PWPF modulator translates the continuous
commanded control torque signal to an on/off signal. The pulse width is achieved by
modulating the width of the activated reaction pulse proportionally to the level of the
torque command input, while the pulse frequency modulates the distance between
the pulses. Usually the width is very short and the frequency is set to a level that is
much faster than the spacecraft rigid-body dynamics.

Figure 7.8 shows the main components of a PWPF modulator, which includes a
Schmidt trigger, a lag filter, and a feedback loop. The Schmidt trigger is an on/off
relay with a deadband and hysteresis. When a positive input to the Schmidt trigger
is greater than Uon, the trigger output is Um. When the input falls below Uoff, the
trigger output is 0. This response is also reflected for negative inputs, i.e. when a
negative input to the Schmidt trigger is less than �Uon, the trigger output is �Um,
and when the input is above �Uoff the trigger output is 0.

The variable Kp is a gain used to amplify or reduce the commanded input.
The filter is a simple first-order filter with time constant �m and filter gain Km.
The hysteresis effect for positive inputs is as follows. The output of the filter
increases until it reaches the Uon value and the signal is set to the prescribe Um

Schmidt Trigger

Fig. 7.8 Pulse-width pulse-frequency modulated system
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Fig. 7.9 Behavior of a pulse-width pulse-frequency modulator with filter

value. Because of the negative feedback loop, the signal then begins to decrease
until it reaches the Uoff value and the signal is set to 0. The width of the hysteresis
is given by h � Uon � Uoff. The behavior of this process is shown in Fig. 7.9.

The PWPF modulator is a popular choice for attitude control thrusters because
of its good fuel efficiency characteristics. If the spacecraft can be considered to
be a rigid body then static behavior can be used to analyze the characteristics of
the PWPF modulator. Reference [1] uses a describing function approach to analyze
the case when flexible dynamics are present. In the static case the input, e.t/, is
considered to be a constant here set to simply e, and the PWPF has nearly a linear
duty cycle. Then f .t/ is given by

f .t/ D f .0/C ŒKm e � f .0/�.1 � e�t=�m/ (7.37)

Note that as time approaches infinity, f .t/ approaches Km e. Let e D r � u, where
r D Kp rc is a constant input into the summer in Fig. 7.8 and u is the constant
output. The on-time, otherwise known as the pulse width, is denoted by Ton. This can
be found by setting f .0/ D Uon and f .Ton/ D Uoff in Eq. (7.37) and solving for
Ton, which yields

Ton D ��m ln

�
1 � h

Uon �Km.r � u/

�
(7.38)

If Ton is small so that the first-order approximation e�Ton=�m � 1 � Ton=�m is good,
then Eq. (7.38) can be approximated by [39]

Ton � �m h

Uon �Km.r � u/
(7.39)
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The output is zero when the thruster is off, so the off-time can be found by setting
e D r , f .0/ D Uoff, and f .Toff/ D Uon in Eq. (7.37) and solving for Toff, yielding

Toff D ��m ln

�
1 � h

Km r � Uoff

�
(7.40)

The first-order approximation for the exponential gives

Toff D �m h

Km r � Uoff
(7.41)

The output frequency, denoted by f , is calculated using

f D 1

Ton C Toff
(7.42)

The duty cycle, denoted by DC , can be used to determine how well the modulator
output follows its input. This quantity is given by

DC D Ton

Ton C Toff
(7.43)

The internal deadband is defined as the magnitude of the signal required to activate
the Schmidt trigger. Assuming zero dynamics in the filter and Kp D 1, from
Fig. 7.8, this occurs when Km r � Uon. Thus, the internal deadband, denoted by
rDB, is given by

rDB D Uon

Km

(7.44)

Equation (7.44) indicates that increasing Km can reduce the size of deadband.
In order to ensure that Uon is the upper bound of the deadband, Km > 1 should be
chosen. The minimum pulse width, denoted by�, is found by substituting Eq. (7.44)
for r in Eq. (7.38) and setting u D Um, which yields

� D ��m ln

�
1 � h

KmUm

�
(7.45)

The saturation level, denoted by rsat, is obtained when the thrusters are on all
the time. This is determined by equating the maximum value of the filter output,
Km.rsat � Um/, to the Schmidt trigger off condition, Uoff. Solving for rsat gives

rsat D Um C Uoff

Km

(7.46)
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Table 7.1 Recommended ranges for PWPF parameters

Parameter Static analysis Dynamic analysis Recommended

Km 2 < Km < 7 N/A 2 < Km < 7

�m 0:1 < �m < 1 0:1 < �m < 0:5 0:1 < �m < 0:5

Uon Uon > 0:3 N/A Uon > 0:3

Uoff Uoff < 0:8Uon N/A Uoff < 0:8Uon

Kp N/A Kp � 20 Kp � 20
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Fig. 7.10 (a) Quaternion errors and (b) control torques using PWPF thrusters

Equation (7.46) gives the maximum value for the pseudo-linear region. Reference
[4] provides recommended parameter values based on static and dynamic tests,
which are shown in Table 7.1. Although these values may not be suitable for every
application, they provide a good starting point for the design of a PWPF thruster.

Example 7.4. In this example a PWPF controller and the control law in Eq. (7.12)
are used for the spacecraft with parameters described in Example 7.1. Three PWPF
thrusters are used with each rc.t/ given by Li , i D 1; 2; 3, in Eq. (7.12). The output
of each PWPF thruster is the corresponding torque input to the spacecraft. The initial
quaternion is again given by q D Œ0:6853 0:6953 0:1531 0:1531�T and the
initial angular velocity is again given by ! D Œ0:5300 0:5300 0:0530�T deg/s.
The desired quaternion is the identity quaternion. The gains are kp D 50 and
kd D 500. The PWPF parameters are Km D 5, �m D 0:5, Uon D 10,
Uoff D 6, Kp D 275, and Um D 20. A plot of the quaternion errors is shown in
Fig. 7.10a. The fourth error-quaternion component approaches 1 while the other
three components approach zero. The control torques, shown in Fig. 7.10b, are
large at the beginning of the maneuver and have signs equivalent to the ones shown
in Fig. 7.1b. From these plots it is clear that the PWPF thrusters also provide a
reorientation maneuver to the desired attitude. Fewer thruster firings are required
at the end of the maneuver. Gains and the PWPF parameters are often scheduled
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in practice at various phases of the maneuver to provide the desired steady-state
performance. Reference [24] provides a study on optimal tuning of the PWPF
parameters.

7.5 Magnetic Torque Attitude Control

Attitude control using magnetic torquers was first proposed in the early 1960s [48].
One of the main uses of magnetic torquers is to dump excess momentum induced
by external disturbances. This is typically required to insure that wheels do not
saturate. Recall that wheels only redistribute a spacecraft’s angular momentum
since they are internal body mechanisms. When disturbances are present excess
momentum can build up in the spacecraft. The secular (orbit-averaged) component
of external disturbance torques would lead to saturation of the momentum capacity
of the reaction wheels, so either mass expulsion or magnetic control torques are
needed to dump excess wheel angular momentum. Magnetic control torques have
several advantages for near-Earth missions, including smoothness of application,
essentially unlimited mission life (due to the absence of expendables), and absence
of catastrophic failure modes [43]. It is important to note that magnetic torquers need
not compensate for the entire disturbance torque in such an application, but only
for its secular component [8]. Other uses include detumbling, initial acquisition,
precession control, nutation damping, and momentum control.

Magnetic torquers use the Earth’s magnetic field to produce a torque.
As described in Sect. 11.1 in Chap. 11, the Earth’s magnetic field magnitude
decreases as the inverse cube of the distance from the center of the Earth. Thus
the magnetic torque will be several orders of magnitude smaller at high-Earth orbits,
such as geosynchronous orbits, than at low-Earth orbits. Magnetic control torques
are typically on the order of 10�5 to 10�4 Nm for low-Earth orbits, depending on
a number of factors such as orbit inclination. Another issue is that the torques are
constrained to lie in a two-dimensional plane orthogonal to the magnetic field, so
only two out of three axes can be controlled at a given time instant. However, full
three-axis control is available provided that the spacecraft’s orbital plane does not
coincide with the geomagnetic equatorial plane and does not contain the magnetic
poles [7].

Reference [38] provides a good example, which is summarized here. Suppose
that one magnetic torquer is aligned with the spin axis of the spacecraft. Activating
this torquer will cause the spin axis to precess about the direction of the magnetic
field when the magnetic field has a component that is perpendicular to the spin
axis. If the spacecraft orbit is in the magnetic equatorial plane then the spin axis
can only be precessed about the direction of the North magnetic pole. In this case
three-axis attitude control is not possible. However, if the orbit plane is offset from
the magnetic equatorial plane, then the direction of the magnetic field will change
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Fig. 7.11 Magnetic torquer control

during the orbit and magnetic attitude control is possible. The magnetic equatorial
plane is only 11ı from the Earth’s equator.1 Thus for equatorial orbits the axis
pointing in the direction of motion has the most control authority. For polar orbits
the axis orthogonal to the direction of motion and to the Earth-pointing direction
has the most control authority.

A survey of magnetic spacecraft attitude control can be found in [40]. Figure 7.11
depicts the magnetic control scheme for the aforementioned spin-axis control.
The torque generated by the magnetic torquers is given by

L D m � B (7.47)

where m is the commanded magnetic dipole moment generated by the torquers and
B is the local geomagnetic field expressed in body-frame coordinates. This is related
to the magnetic field vector, R, expressed in reference-frame coordinates through the
attitude matrix: B D AR. The vector R depends on the spacecraft’s orbital position.
The magnetic moment is given in units of Am2 and the magnetic flux density of the
geomagnetic field is given in units of 1Wb=m2 D 1Tesla (T) D 104 Gauss (G).

7.5.1 Detumbling

In this section a magnetic control law is developed that can be used to detumble a
spacecraft (i.e. null its angular velocity vector). Detailed theory behind this control
law can be found in [6]. The control is effected by commanding a magnetic dipole
moment:

m D k

kBk ! � b (7.48)

1See Sect. 11.1.
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where b D B=kBk, ! is the angular velocity and k is a positive scalar gain. This
gives a control torque

L D k

kBk .! � b/ � B D k .! � b/ � b D �k .I3 � b bT /! (7.49)

The control torque is clearly perpendicular to b. To prove the stability of this control
law consider the following candidate Lyapunov function:

V D 1

2
!T J! (7.50)

Using Eq. (7.1b) with Eq. (7.49), PV can be shown to be given by

PV D �k!T .I3 � b bT /! (7.51)

Since the eigenvalues of .I3 � b bT / are always 0, 1, and 1, then PV is only negative
semi-definite. Stated another way, when ! is parallel to b then PV D 0. This is not a
concern in practice, though [6].

If no angular velocity information is available, we use Eq. (3.14) for the magnetic
field vector, which in the notation of this section is

PB D A PR �! � B (7.52)

We assume, as is the case for the initial stages of detumbling, that PR� PB, so a good
approximation to Eq. (7.48) is given by

m D � k

kBk
PB (7.53)

where B is the field sensed by onboard magnetometers. This is an alternative version
of the well-known B-dot control shown in [43]. As stated in [6] global asymptotic
stability cannot be proven using Eq. (7.53). But, the absolute angular velocity can
be reduced down to a value of the same order of magnitude as the orbit rate (around
10�3 rad/s) as in the case when the standard B-dot command law is used. Note that
in practical application, PB would be computed by a finite difference approach, which
introduces more noise in the control signal. A filter could be employed to reduce the
noise levels, but B-dot control is often implemented as a bang-bang control law.
Assume that we have n torquers, and that the i th torquer can produce a maximum
dipole of ˙mmax

i in a direction specified by the unit vector ui . Then the bang-bang
B-dot detumbling control commands are

mi D �mmax
i sign.ui � PB/ for i D 1; : : : ; n (7.54)
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Fig. 7.12 Detumbling simulation results. (a) Angular velocities. (b) Control torques

To avoid feedback from the torquers to the magnetometers, the computation of PB is
inhibited for some period after any mi changes sign.

Reference [6] provides a gain expression based on analyzing the closed-loop
dynamics of the component of ! perpendicular to the Earth’s magnetic field:

k D 4

Torb
.1C sin �m/ Jmin (7.55)

where Torb is the orbital period in seconds, �m is the inclination of the spacecraft
orbit relative to the geomagnetic equatorial plane and Jmin is the minimum principal
moment of inertia. Note that k is always positive. Constant positive values can also
be used to achieve design specifications if desired.

Example 7.5. In this example the control law in Eq. (7.49) is used to null the angular
velocity of a rotating spacecraft. The gain is given by Eq. (7.55). The inertia of the
spacecraft is given in Example 7.2. Note that the minimum principal moment of
inertia is given by 4726.01952 kg-m2. The GCI inertial position and velocity of
the spacecraft are given by r0 D Œ1029:7743 6699:3469 3:7896�T km and v0 D
Œ�6:2119 0:9524 4:3946�T km/s. The epoch time is May 10, 2011 at 4:56:36.9191
a.m. This information is required to generate the reference magnetic field. The initial
quaternion is given by q.t0/ D

p
2=2 Œ1 0 0 1�T and the initial angular velocity

is given by !.t0/ D Œ0:01 0:01 0:01�T rad/s. A plot of the angular velocity
trajectories is shown in Fig. 7.12a and the associated magnetic control torques are
shown in Fig. 7.12b. Clearly, the control law is able to detumble the spacecraft.
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7.5.2 Momentum Dumping

As stated previously the most common use of magnetic torquers for low-Earth
orbiting spacecraft is momentum dumping. Excess momentum is usually built up in
the spacecraft through external disturbances, which are non-conservative. A periodic
disturbance torque along one spacecraft axis results in a cyclic variation in the
angular velocity along that axis, while a constant (secular) disturbance results in a
linear increase in angular velocity, where the wheel is accelerated at a constant rate
in order to transfer the excess momentum from the external disturbance to the wheel
[26]. Eventually saturation of the wheels will occur due to the excess momentum,
which can only be dumped through external torques.

A common approach to design a magnetic torquer control law for momentum
dumping is to command a magnetic dipole moment [8]:

m D k

kBk h � b (7.56)

which is just like the detumbling control of Eq. (7.48) with the angular velocity
vector replaced by the wheel angular momentum. The resulting torque is given by

L D �k .I3 � b bT /h (7.57)

As with the detumbling case a torque cannot be exerted when h is parallel to b, but
as before, this is not a concern for practical applications.

Example 7.6. In this example the control law in Eq. (7.57) is used to reduce the
wheel momentum for the simulation shown in Example 7.2. All the parameters,
such as the inertia matrix, the initial quaternion, the initial angular velocity, the
initial wheel momentum, and control gains are identical to the ones shown in
Example 7.2. The initial position, velocity and epoch are the same as the ones shown
in Example 7.5. The goal is to reduce the overall momentum by about half in less
than 3 h. To accomplish this goal the gain k in Eq. (7.57) is set to 0.0001.

The momentum dumping control law is not turned on until the 30-min mark.
This allows the spacecraft to first complete its reorientation maneuver. A plot
of the quaternion errors is shown in Fig. 7.13. As before, the fourth error-
quaternion component approaches 1 while the other three components approach
zero. The wheel momenta are shown in Fig. 7.13. Note that the wheel momenta
begin to approach zero after the momentum dumping control law is executed.
The commanded dipoles are shown in Fig. 7.13. The spacecraft momentum is shown
in Fig. 7.13. At the end of 3 h we clearly see that the momentum is reduced by the
desired goal. The magnitude of control torques, not shown here, is around 10�3 Nm.
This is about an order of magnitude higher than a typical magnetic control torque
for momentum dumping. In practice the gain k would be set to a much lower
level because reducing momentum by half over the short time period shown in this
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Fig. 7.13 Momentum dumping simulation results. (a) Quaternion errors. (b) Wheel momenta. (c)
Commanded dipoles. (d) Spacecraft momentum

example is typically not required. The magnetic control law is usually continuously
active to dump excess momentum due to external disturbances during the mission
mode.

7.6 Effects of Noise

None of the control simulations presented in the previous sections of this chapter
incorporates measurement noise, which is always present in practice for any attitude
sensor. In most cases the filtering methods in Chap. 6 are employed to filter noisy
measurements and the estimates are used in the feedback controllers. For linear
systems replacing the “true” values with the Kalman filter estimates in the control
law turns out to actually be the optimal approach, as is proven by the Separation
Theorem [12], also known as the Certainty Equivalence Principle [5, 16, 42]
(see Sect. 12.3.9). This theorem states that the solution of the overall optimal
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control problem with incomplete state knowledge is given by the solution of two
separate sub-problems: (1) the estimation problem solved using the Kalman filter
to provide optimal state estimates, and (2) the control problem using the optimal
state estimates, which is derived from the standard optimal control results. Another
way to show this separation of the overall control design involves the eigenvalue
separation property [2], which states that the eigenvalues of the overall closed-loop
system are given by the eigenvalues of the control system together with those of
the state estimator system. Unfortunately, no such theorem is available for general
nonlinear systems. Still, the combined Kalman filter and feedback control approach
works well for most attitude control systems.

The quaternion is the parameterization of choice for both estimation and control
because it avoids singularity issues. As explained previously, the mapping of
quaternions to rotations is globally two-to-one because q and �q represent the
same attitude. Neglecting this property in the control law can induce a phenomenon
called unwinding, which may produce a control law that does not guarantee that
the shortest path is provided to the final orientation, as described in Sect. 7.2.
To overcome this path issue a discontinuous set of quaternions is used through the
signum function, as also shown in previous sections of this chapter. The problem
with the signum function is that it is not robust when noise is present, meaning that
noise can destroy any global attractivity property [33].

Reference [30] provides an excellent example of the noise and unwinding issues.
We consider an attitude regulation problem whose goal is to drive the attitude error
to zero, which means to drive the error quaternion to˙Iq , using the angular velocity
as the input. The error quaternion kinematics are given by

ı Pq1W3 D 1

2
Œıq1W3��!C 1

2
ıq4! (7.58a)

ı Pq4 D �1
2
ıqT1W3! (7.58b)

Consider the control law given by ! D �ıq1W3 and the following candidate
Lyapunov function:

V1.ıq/ D 2 .1 � ıq4/ D .1 � ıq4/2 C kıq1W3k2 (7.59)

Clearly V1.ıq/ � 0 with equality if and only if ıq D Iq , and V1.ıq/ achieves its
maximum when ıq D �Iq . The time derivative of V1.ıq/ with ! D �ıq1W3 is

PV1.ıq/ D �kıq1W3k2 (7.60)

which is almost always negative. However, there are two equilibrium points: a stable
one at ıq D Iq and an unstable one at ıq D �Iq . This leads to the classic unwinding
issue, which is depicted in Fig. 7.14a. If ıq4 is initially negative, the controller
increases the attitude error before driving it to zero.
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Fig. 7.14 Noise chattering and hysteretic regulation. (a) Quaternion attitude control. (b) Hys-
teretic regulation

Now consider the control law ! D �ıq4ıq1W3 and the following candidate
Lyapunov function:

V2.ıq/ D 1 � ıq24 D kıq1W3k2 (7.61)

In this case V2.ıq/ D 0 if and only if ıq D ˙Iq , and its maximum value is achieved
when ıq4 D 0, which corresponds to a 180ı rotation. Taking the time derivative of
V2.ıq/ with ! D �ıq4ıq1W3 leads to

PV2.ıq/ D �ıq24kıq1W3k2 (7.62)

which is always negative except at the two stable equilibrium points ıq D ˙Iq .
Also note that V2.ıq/ D V2.�ıq/ and !.ıq/ D !.�ıq/. This clearly solves the
unwinding problem, but ! D 0 when ıq4 D 0 so convergence takes longer to
achieve as initial conditions are closer and closer to 180ı rotations.

In an attempt to overcome the convergence and unwinding issues, the control law
! D �sign.ıq4/ıq1W3 is chosen with the following candidate Lyapunov function:

V3.ıq/ D
(
2 .1 � ıq4/ D .1 � ıq4/2 C kıq1W3k2 ıq4 � 0
2 .1C ıq4/ D .1C ıq4/2 C kıq1W3k2 ıq4 < 0

(7.63)

Taking the time derivative of V3.ıq/ with ! D �sign.ıq4/ıq1W3 leads to

PV3.ıq/ D �kıq1W3k2 (7.64)

which is always negative except at the two stable equilibrium points ıq D ˙Iq .
Thus this control law achieves global asymptotic stability, but it is not robust to
measurement noise. Reference [29] shows that for an arbitrarily small noise signal,
with initial conditions close to 180ı rotations, this control law keeps the state near
the discontinuity for all time. This is the noise-induced chattering problem depicted
in Fig. 7.14a.
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To solve the unwinding and noise-induced chattering problems [30] develops
a hybrid controller, which incorporates hysteresis-based switching using a single
binary logic variable for each quaternion error state. The strategy is depicted in
Fig. 7.14b, where ı 2 .0; 1/ denotes the hysteresis half-width. Define the following
function:

sign.s/ D
(

sign.s/ jsj > 0
f�1; 1g s D 0 (7.65)

When s D 0 the value of sign.s/ is C1 if s approaches zero from the positive side
and �1 if s approaches from the negative side. Now consider the following control
law: ! D �h ıq1W3, where h 2 f�1; 1g and the dynamics of h are given by

Ph D 0 when .ıq; h/ 2 fh ıq4 � �ıg (7.66a)

hC D sign.ıq4/ when .ıq; h/ 2 fh ıq4 � �ıg (7.66b)

where hC denotes the value of the logic variable after being updated. This function
represents a hysteretic regulation in the control law. It is a hybrid approach
generalizing the control laws ! D �ıq1W3 and ! D �sign.ıq4/ıq1W3, where ı
in Eq. (7.66) manages a tradeoff between robustness to measurement noise and
hysteresis-induced inefficiency. The control law ! D �sign.ıq4/ıq1W3 is recovered
when ı D 0. Setting ı to value greater than or equal to 1 gives a simple control law
with the full unwinding effect.

Reference [30] applies the aforementioned hybrid approach to the control law
given in Eq. (7.36). The hybrid control law is given by

L D Œ.ıA!c/��J ıA!c C J ıA P!c � kph ıq1W3 � kd ı! (7.67)

where ı 2 .0; 1/ and the dynamics of h are given by Eq. (7.66).

Example 7.7. This example reproduces the example results of [30]. It involves a
regulation case that takes any initial quaternion and angular velocity to the identity
quaternion and zero angular velocity, respectively. Let p D Œ1 2 3�T =kŒ1 2 3�k.
The inertia matrix is given by J D 10 � diag.Œp1 p2 p3�/ and the control gains are
given by kp D kd D 1. The hysteresis half-width is chosen to be ı D 0:4. Synthetic
quaternion measurements are generated using

q D qtrue Cm v
kqtrue Cm vk

where v is a zero-mean Gaussian white-noise process with covariance given by
the identity matrix and m is drawn from a uniform distribution on the interval
Œ0; 0:2�. These noise parameters produce a 1� attitude measurement error of about
6.5ı in each axis, which is not realistic for any spacecraft attitude sensor; however,
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Fig. 7.15 Noise sensitivity results. (a) Scalar component quaternion errors. (b) Rotation angle
errors. (c) Norm of angular velocity errors. (d) Control effort

this noise level more distinctly shows the effectiveness of the hybrid control law.
No noise is added to the true velocity vector. Finally, the initial condition for h is
given by h.0/ D 1.

In the first simulation the initial quaternion and angular velocity are given by
qtrue.0/ D ŒpT 0�T and !true.0/ D 0, respectively. Plots of h q4, the rotation angle
error � D 2 cos�1 jq4j, norm of the angular velocity, and control effort are shown
in Fig. 7.15. Setting ı D 0 gives the discontinuous controller case. The unwinding
controller case is not shown because its results are identical to the hybrid controller
results because h does not change in the hybrid case. Figure 7.15a shows the
sensitivity to noise for the discontinuous controller case where the chattering
behavior is clearly visible. This behavior causes a lag in the response, which in
turn requires more control effort as shown by Fig. 7.15d. The hybrid controller is
clearly more robust to measurement noise and requires less control effort than the
discontinuous controller.
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Fig. 7.16 Effects of unwinding. (a) Scalar component quaternion errors. (b) Rotation angle errors.
(c) Norm of angular velocity errors. (d) Control effort

The second simulation shows how control laws that exhibit unwinding can resist
a “beneficial” angular velocity. All parameters are identical to the first simulation
except that the initial quaternion is given by qtrue.0/ D Œ

p
1 � 0:22pT � 0:2�T

and the initial angular velocity is !true.0/ D 0:5p. Figure 7.16 shows the results
for the hybrid, discontinuous, and unwinding controller cases. The unwinding
controller case is given by setting ı > 1. The initial velocity is specifically
chosen so that it is in the direction that decreases the angle between the initial
quaternion and commanded quaternion. The discontinuous controller immediately
pulls the quaternion toward �Iq (note that h immediately jumps to �1 and stays
there). The hybrid controller initially pulls the quaternion toward CIq , but after
the initial angular velocity pushes the attitude past the hysteresis width, its value
of h switches and then pulls the quaternion toward �Iq . The unwinding-inducing
controller always pulls the quaternion toward Iq . Figure 7.16d shows that the
unwinding-inducing controller requires the most control effort, as expected, while
the discontinuous and hybrid controller give comparable control efforts.



318 7 Attitude Control

Example 7.8. In this example a more realistic scenario is presented using the
WMAP spacecraft. The tracking control law is given by Eq. (7.36) with control
gains given by kp D 5 and kd D 3. Noise is added to the true angular velocity by
using a zero-mean Gaussian white-noise process with standard deviation given byp
�t
p
10�10�7 rad/s, where the sampling interval is given by�t D 0:1 s. Realistic

noise is also added to the true quaternion using a multiplicative approach. It is
assumed that the noise is isotropic, which is a valid assumption when multiple star
trackers pointed sufficiently apart are used on the spacecraft. The standard deviation
for all components of the 3 � 1 attitude noise vector, denoted by vq , is given by
.0:5=3/� 10�3 deg. The “noise” quaternion is given by qnoise D ŒvTq 1�T =kŒvTq 1�k.
The measured quaternion is generated using q D qtrue ˝ qnoise. The hysteresis half-
width is chosen to be ı D 0:4 for the hybrid controller and ı D 3 for the unwinding
controller. The initial condition for h is given by h.0/ D 1 for all controllers. Results
for the scalar component quaternion errors, the rotation error angles, the norm of the
velocity errors and the torque norm are shown in Fig. 7.17, which indicate that the
hybrid controller provides the best performance. This example shows that under
realistic noise errors the hybrid controller can provide superior results over standard
control approaches to handle noise chattering effects.

7.7 SAMPEX Control Design

This section presents the attitude determination and control design for a real space-
craft called the Solar, Anomalous and Magnetospheric Particle Explorer (SAMPEX)
which was the first of the NASA Small Explorer (SMEX) missions. It was launched
on July 3, 1992 into an 82ı inclination orbit with an apogee of 670 km and a perigee
of 520 km, with a planned mission life of 3 years. Its scientific instruments included
the Heavy Ion Large Telescope (HILT), the Low Energy Ion Composition Analyzer
(LEICA), the Mass Spectrometer Telescope (MAST), and the Proton/Electron
Telescope (PET). Over its lifetime, SAMPEX provided the first continuous record
of high sensitivity measurements of energetic ions and relativistic electrons over
almost two solar cycles. New insights were given into the acceleration, transport
and loss processes in the Earth’s magnetosphere, driven by high speed streams
or coronal mass ejections in the solar wind. SAMPEX also discovered doubly
charged anomalous cosmic rays of interstellar origin, limiting the time scale for
acceleration of these ions in the outer heliosphere to a few years. One of the
significant achievements of SAMPEX was to confirm the existence of the trapped
component of the anomalous cosmic rays. During its first year it confirmed that these
rays are singly charged and located in a narrow belt of trapped cosmic rays within
the inner of the two Van Allen radiation belts. This discovery provided proof of a
third radiation belt. Furthermore, SAMPEX also successfully addressed important
scientific objectives concerning solar energetic particles because it was launched
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when the Sun had just passed the peak of its 11-year solar cycle and begun to move
toward solar minimum.

Figure 7.18 is a schematic of SAMPEX, showing the science instruments and
definitions of the body axes. The attitude control system (ACS) consists of one
reaction wheel, three magnetic torquer bars, one two-axis fine Sun sensor, five
coarse Sun sensors, and one three-axis magnetometer (TAM). The spin axis of
the reaction wheel and the boresight of the fine Sun sensor are along the body
y-axis, or pitch axis, j � Œ0 1 0�T .2 Attitude determination is performed using
the TRIAD algorithm of Sect. 5.1 with data from the Sun sensor and TAM. The
three-axis attitude requirement is 2ı. During its lifetime SAMPEX had three primary
science modes and included a number of submodes [44]. All science modes have a
Sun angle constraint to maintain the body y-axis to within ˙ 5ı of the Sun line in
order to keep the solar arrays pointed towards the Sun. The primary science modes
include the following:

2This has no relation to the orbit plane because SAMPEX is not Earth-pointing.
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Fig. 7.18 SAMPEX
schematic

• Vertical Pointing. This mode tends to maximize zenith pointing over the poles.
• Orbit Rate Rotation (ORR). This mode provides a smooth scan of the celestial

sphere while maintaining the Sun angle constraint.
• Special Pointing. This mode orients the instrument boresights perpendicular to

the field lines of the Earth’s magnetic field in regions of low field strength and
parallel to the field lines in regions of high field strength, which allows better
characterization of heavy ions trapped by the field.

The submodes include the following:

• Coast. This submode turns off the magnetic torquers and holds the wheel speed
at its most recent value. This submode is used to drift through mathematical
singularities in the attitude determination when the magnetic field and Sun
vectors are co-aligned within 5ı during Sun availability and within 40ı during
eclipse. The angle between these vectors can be found by taking the inverse
cosine of the dot product of the inertial magnetic and Sun vectors.

• Eclipse. This submode is enabled when the Sun presence flag returns a value
of false. It turns off the magnetic torquers and determines the Sun vector from
the assumption that the reaction wheel angular momentum keeps the spacecraft
y-axis inertially fixed. This assumption is reasonable for short periods of time
(<1 h). The body Sun vector is assumed to be given by bsun D j and attitude
determination is performed normally using the TAM vector and assumed Sun
body-vector. Note that the eclipse duration can be up to 45 min per orbit in
shadow seasons.

Two other modes are also used. The first is a magnetometer calibration mode
that senses the unwanted component of the signal on the TAM produced by the
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torquer bars and then estimates the coupling matrix values to compensate for the
contamination. The other is a Sunpoint-only mode that is a digital implementation
of the spacecraft’s analog safehold mode.

SAMPEX’s science mission was terminated on June 30, 2004, after it had
exceeded its 3 year mission life goal by a factor of almost 4, but the spacecraft
continued to be operated as a testbed. On August 18, 2007 the reaction wheel began
to fail after more than 15 years of continuous operation. The spacecraft was then
successfully placed into a spin stabilized mode described in [44] until it reentered
the Earth’s atmosphere on November 13, 2012.

7.7.1 Attitude Determination

As previously mentioned SAMPEX uses a TAM and a Sun sensor in the ACS
hardware. The Sun sensor has a field of view of ˙64ı and outputs 8 bits of Gray
code data for each axis with a resolution of 0.5ı, which dominates the sensor noise.
This is converted to binary and the two binary counts, Na and Nb , are converted to
the Sun’s image plane coordinates through [19]

x D sxNa � bx (7.68a)

z D szNb � bz (7.68b)

where .sx; sz/ are scale factors in units of cm/count and (bx; bz/ are biases in units
of cm. For the SAMPEX Sun sensor these parameters are given by sx D sz D
0:002754 and bx D bz D �0:350625. The body Sun vector is computed using [10]

bsun D 1p
x2 C z2 C h2

2
4

�n xp
h2 � .n2 � 1/.x2 C z2/

�n z

3
5 (7.69)

where n is the refraction index of the glass and h is the glass thickness in cm. For
SAMPEX n D 1:4553 and h D 0:448. To simulate the Sun sensor from the inertial
Sun vector rsun, this vector is first converted to body coordinates using the attitude
matrix: bsun � Œbsun1 bsun2 bsun3 �

T D A rsun. Then the components x and z are
computed using

z D ˙ h bsun3q
n2 � b2sun1 � b2sun3

(7.70a)

x D z bsun1

bsun3
(7.70b)
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where the sign of z is easily determined by the known body motion. A Sun sensor
measures an azimuth �, and a coelevation � , which are computed by

� D atan2.x; z/ (7.71a)

� D tan�1
"

n
p
x2 C z2p

h2 � .n2 � 1/.x2 C z2/

#
(7.71b)

Measurements are obtained by adding zero-mean Gaussian white-noise to � and
� with standard deviations �� and �� , respectively. For SAMPEX the standard
deviation of both of the variables is given by 0.01ı. Next, the 0.5ı resolution is
simulated using the MATLAB “round” command, i.e. round(meas=res/ � res,
where meas is the measurement including noise and res is the resolution. Note
that �� , �� , and res must all be converted to radians. To produce the simulated body
vector measurements, first the tangent of the angles for the rotations around the �x
and z axes, denoted by ˛ and ˇ, are computed using

tan˛ D tan � sin� (7.72a)

tanˇ D tan � cos� (7.72b)

where � and � here are the measured values, including noise and the 0.5ı resolution.
The measured unit vector is then given by

bsun D ˙ 1p
1C tan2 ˛ C tan2 ˇ

2
4

tan˛
1

tanˇ

3
5 (7.73)

where the sign is easily determined from the true body vector.
A triaxial search coil magnetometer is used on SAMPEX, which outputs 12 bit

words for each axis. Its resolution is 31.25 nT and its range is˙64;000 nT. The TAM
body vector is denoted by bmag and the respective inertial vector is denoted by rmag,
which is computed using a 10th-order geomagnetic field model. TAM measurements
are computed by first converting the inertial vector into body coordinates and then
adding zero-mean Gaussian white-noise. For the SAMPEX TAM the covariance
matrix of this noise is assumed to be isotropic with standard deviation given by 30
nT per axis. The SAMPEX algorithm contains a procedure to calibrate the torque-
rod/magnetometer coupling matrix, denoted by C . It turns off all torquer bars and
obtains an uncontaminated measurement, denoted by bu

mag. Then it sequentially
turns on each torquer bar with a 10 Am2 excitation and obtains a contaminated
measurement, denoted by bcmag. The relationship of these vectors is given by

bcmag D bu
mag C C m (7.74)
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where m is the dipole moment of the torquer rods computed from the torque
magnetic assembly current feedback. The matrix components of C can be computed
using a simple least-squares procedure with multiple observations of bu

mag and bcmag.
Once the TRIAD solution produces an attitude matrix, the spacecraft angular

velocity is computed by first using a first-order finite difference to estimate the
derivative of the attitude matrix:

PA � AkC1 � Ak
�t

(7.75)

where �t D 0:5 s is the sampling interval. Then the cross product matrix of
the angular velocity is determined using the average values from the two possible
solutions of the off-diagonal elements:

� Œ!kC1�� D 1

2

� PAAT � . PAAT /T � D 1

2�t
.AkC1ATk � AkATkC1/ (7.76)

The total spacecraft angular momentum is given by

H D J!CHw j (7.77)

where J is the inertia matrix and Hw is the momentum of the wheel. For SAMPEX
the inertia matrix is given by

J D
2
4
14:1005 �0:1898 �0:9897
�0:1898 19:2526 �0:4881
�0:9897 �0:4881 12:0668

3
5 kg-m2 (7.78)

The wheel momentum is computed using the measured angular velocity of the
wheel, denoted by !w, with Hw D J w!w, where the inertia of the wheel is given
by J w D 4:1488 � 10�3 kg-m2.

The computed values of H are very noisy due to the 0.5ı resolution in the
Sun sensor. A simple Kalman filter is used to provide filtered estimates of these
computed values. The angular momentum dynamics is given by

PH D �! �HC Lmag (7.79)

where Lmag is the magnetic control torque in body coordinates. Using a first-order
finite difference to approximate PH and a first-order finite difference to approximate
PA in �Œ!�� D PAAT � .AkC1ATk � I3/=�t leads to the following discrete-time

prediction equation [31]:

H�
kC1 D AkC1ATk HC

k C�t Lmagk (7.80)
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The update equation for the Kalman filter is given by

HC
k D .1 �K/H�

k CK Hderivedk (7.81)

where Hderivedk is given by Eq. (7.77) using computed values for the spacecraft and
wheel angular velocities, and respective known inertia quantities. A Kalman gain of
K D 0:01 is chosen, which provides good filtered estimates without excessive lag
in the control signal.

7.7.2 Magnetic Torque Control Law

The magnetic torquers are used to control the magnitude and direction of the
system angular momentum when SAMPEX is in sunlight. The commanded angular
momentum magnitude, denoted by Hc , is 0.81349 Nms.3 The desired direction is
both along the body y-axis to damp spacecraft nutation and along the Sun line
to keep the solar arrays Sun-pointing. An undesired component of the spacecraft
angular momentum, denoted by �H, can be computed as

�H D .H �Hc j/C .H �Hc bsun/ D 2H �Hc .jC bsun/ (7.82)

The magnetic torquers are commanded to have dipole moment given by

m D kmag�H � bmag (7.83)

where kmag is a constant gain, given by 7:376 � 10�13 for SAMPEX. The control
torque is computed using Eq. (7.47):

Lmag D m � bmag (7.84)

The measured values of bmag and bsun are used to compute the control torque.
As previously mentioned, magnetic control is turned off during eclipse because con-
trolling the angular momentum is undesirable when Sun sensor data are unavailable.
Angular momentum conservation keeps the solar arrays pointing toward the Sun
when it is behind the Earth.

7.7.3 Science Modes

Reaction wheel control is used to align the instrument boresights, which are along
the spacecraft z-axis, with a target vector denoted by u. This section shows details
of the three science modes of SAMPEX, each of which has a different target

3This is equal to 0.6 ft-lb-s and has been erroneously given as 0.6 Nms in the literature.
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Fig. 7.19 Flatley coordinate
system

vector. All science modes have a rotation about the body y-axis, so the target
vector is always in the body x-z plane. All three science modes also employ a
velocity avoidance constraint. This constraint was added due to orbital debris and
micrometeoroid fluxes that were 50–100 times higher than the flux tables used in the
original SAMPEX proposal. The SAMPEX HILT sensor includes a flow-through
isobutane proportional counter that is susceptible to penetration by debris and other
fluxes [20]. Keeping the HILT sensor pointed away from the velocity vector, which
the direction of maximum flux, compensates for the higher than expected fluxes.

Since all three science modes use the velocity avoidance algorithm, it is discussed
first. The RAM angle is defined as the angle between the HILT boresight and the
velocity vector. An optimal RAM angle is 90ı since it does not degrade any of the
science modes while providing an estimated 89 % chance of survival for the HILT
sensor over a 3 year mission period. This RAM angle was actually later reduced to
80ı and the HILT sensor still functioned properly for nearly 20 years!

The velocity avoidance algorithm can be easily developed by using a new
coordinate system, dubbed the “Flatley Coordinate System,” and shown in Fig. 7.19.
The body Sun vector is its first axis, the target vector is its third axis, and their cross
product is its second axis. The angle ' is the angle between the target vector and the
unit velocity vector expressed in body coordinates, denoted by vbody; and � is the
angle between the target vector and the RAM vector, uram, which is the target vector
corrected for velocity avoidance. Note that both u and uram are perpendicular to the
Sun vector. If u � vbody � cos'min, where 'min is the minimum RAM angle, then the
velocity avoidance algorithm is not necessary.

The attitude matrix that rotates vectors from the body frame to the Flatley frame
is given by

AFB D
2
4

bTsun

wT

uT

3
5 (7.85)
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where w � u�bsun=ku�bsunk. The velocity vector in Flatley coordinates, denoted
by f D Œf1 f2 f3�

T , can be determined using f D AFB vbody. The vector uram in
Flatley coordinates is simply uram D Œ0 sin � cos ��T . The desired constraint to
determine uram is given by

uram � f D f2 sin � C f3 cos � D cos'min (7.86)

Squaring both sides of Eq. (7.86), and using the relations cos2 � D 1 � sin2 � and
f3 cos � D cos'min � f2 sin � leads to the following quadratic equation for sin � :

.f 2
2 C f 2

3 / sin2 � � 2f2 cos'min sin � C cos2 'min � f 2
3 D 0 (7.87)

The solution for sin � is given by

sin � D
f2 cos'min ˙ jf3j

q
f 2
2 C f 2

3 � cos2 'min

f 2
2 C f 2

3

(7.88)

If f2 � 0 then sin � < 0 and the negative sign is chosen in the radical, otherwise the
positive sign is chosen since if f2 < 0 then sin � > 0 is true. The vector uram can
now be computed using simple sine and cosine relationships from Fig. 7.19:

uram D .u � bsun/ sin � C u cos � (7.89)

Note that if � D 0 then uram D u as expected and that if � D 0 then Eq. (7.86)
shows that f3 D cos'min. In practice the measured values for bsun are used.
The attitude matrix is required to compute the velocity vector in body coordinates.
Finally, the velocity vector in inertial coordinates is computed using an onboard
orbit propagator, which is updated from ground observations.

For all three modes the pitch error angle, which is used in the control system, is
given by

e D atan2.�uram1 ; uram3 / (7.90)

where uram1 and uram3 are the first and third components of uram, respectively. Note
that in some cases the velocity avoidance algorithm is turned off. For these cases we
simply set sin � D 0 and cos � D 1 in Eq. (7.89), so uram D u. Equation (7.90) can
still be used in the control law.

7.7.3.1 Vertical Pointing Mode

The vertical pointing mode minimizes the angle between the spacecraft z-axis
and the zenith vector within the Sun pointing constraint [19]. This mode has the
undesirable property of pointing directly into the velocity vector twice per orbit
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when the Sun is in the orbit plane, but the velocity avoidance algorithm overcomes
this problem. The target vector in inertial coordinates is given by

uref D rsun � .r � rsun/

krsun � .r � rsun/k (7.91)

where rsun is the Sun unit vector in inertial coordinates and r is the spacecraft
position vector in inertial coordinates. The body target vector is found by using
u D Auref where A is the computed attitude matrix from the TRIAD algorithm.
This mode clearly has the spacecraft z-axis as close to zenith as possible while
remaining perpendicular to the Sun.

7.7.3.2 Orbit Rate Rotation Mode

In the ORR mode the spacecraft z-axis rotates at one revolution per orbit in a plane
perpendicular to the Sun vector, which provides a smooth scan of the celestial
sphere, while maintaining the y-axis Sun pointing requirement. At the same time,
the z-axis is desired to point as close to North as possible at the northernmost point
in the orbit, South as possible at the southernmost point, and parallel to the equator
at the equatorial crossings [19]. To develop the target vector we first define the North
pole vector in inertial coordinates: p D Œ0 0 1�T and also compute the unit orbit
normal vector:

n D r � v
kr � vk (7.92)

where r is the inertial position vector and v is the inertial velocity vector. We now
compute the orbit angle as seen from the northernmost point in the orbit using the
following vectors:

a D p � n
kp � nk (7.93a)

c D n � a (7.93b)

Note that a is the vector in the direction of the ascending node and the vector c is in
the direction of the northernmost point in the orbit. The sine and cosine of the orbit
angle, defined by ˛, can be computed from

sin˛ D �r � a
krk (7.94a)

cos˛ D r � c
krk (7.94b)
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The two vectors w D c�rsun=kc�rsunk and rsun�w provide an orthonormal basis for
the plane perpendicular to the Sun. Note that w is a vector that points perpendicular
to the Sun and lies in the equatorial plane. Thus when the spacecraft is near the
equator, it is desired to have the target vector point along w, which corresponds to
orbit angles of ˛ D =2 and ˛ D 3=2. The vector rsun�w is also perpendicular to
the Sun and points as close as possible to the northernmost point given the Sun
constraint. Thus when the spacecraft is near the poles it is desired to have the
target vector point along rsun � w, which corresponds to orbit angles of ˛ D 0

and ˛ D  . Since it is desired to rotate the body y-axis about the positive Sun line,
the orientation of the orbit normal relative to the Sun line must be considered in the
target vector. If the Sun passes through the orbit plane when the spacecraft is near the
equator, this will cause a 180ı flip, which we would like to prevent. The following
target vector, expressed in inertial coordinates, has all these properties:

uref D .rsun � w/ cos˛ C Ts w sin˛ (7.95)

where Ts is the target sign variable, which has initial value of sign.rsun � n/. If the
Sun passes through the orbit plane, the next time the spacecraft comes within 0.5ı of
the northernmost or southernmost point of the orbit, whichever comes first, then the
variable Ts will change sign, which will keep the spacecraft rotating about the Sun
line without causing a flip. The body target vector is again found by using u D Auref

where A is the computed attitude matrix from the TRIAD algorithm.
Reference [20] shows the following limiting cases for the ORR mode. When

the Sun is perpendicular to the orbit plane, the ORR mode reduces to a zenith
pointing mode, as shown in Fig. 7.20a. Since the target vector is given by Eq. (7.95)
the rotation about the z-axis along the orbital path is zenith pointing, as shown in
Fig. 7.20b. For the case when the Sun is parallel to the orbit plane, the ORR mode
becomes a zenith pointing mode over the poles and points in the r � p direction at
the equator. Figure 7.21a shows that w D c � rsun, and since the target vector is
given by Eq. (7.95) the orientation of the z-axis can be determined throughout the
orbital path, as shown in Fig. 7.21.

7.7.3.3 Special Pointing Mode

After the discovery of a third radiation belt it was desired to change the pointing
algorithm to orient the instrument boresights perpendicular to the magnetic field line
while passing through a region in the South Atlantic containing a high concentration
of trapped particles. Figure 7.22 served as the “requirements document” from Dan
Baker, a project scientist, and Glenn Mason, the SAMPEX Principal Investigator,
which led to the SAMPEX special pointing mode. Details of this mode, documented
in [28], are repeated here. In order to satisfy these revised science requirements, the
pointing mode was modified using the magnetic field strength krmagk as a delimiter
to point the spacecraft perpendicular to the magnetic field vector whenever the field
strength is determined to be less than some specified value, which was set to 3 �
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104 nT. This pointing uses magnetometer data to determine the field direction in the
spacecraft reference frame. Since the magnetometer data was judged to provide a
good pointing reference, the specification was changed in the high-field regions to
point as close to the magnetic field vector as possible, consistent with the constraint
that the y-axis be pointed at the Sun. At northern latitudes, the desired orientation
is anti-parallel to the field, and in the South the orientation is parallel to the field. In
both cases, then, the spacecraft points away from the Earth in the polar regions.

In the low-field region the target vector is to be perpendicular to both the
Sun vector and the magnetic field vector. This requirement is obviously satisfied
by choosing the target vector in the direction of the cross product bsun � bmag.
The negative of this vector clearly satisfies the same requirement. One and only
one of these two vectors is more than 90ı from the velocity vector, and we choose
this one to satisfy the velocity avoidance requirement. Since the magnetic control
keeps the Sun vector within a few degrees of the y-axis vector j, the cross product
bsun � bmag can be well approximated by j � bmag, so the target vector is computed
from the components of bmag as
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u D ˙1q
b2mag1

C b2mag3

2
4
bmag3
0

�bmag1

3
5 (7.96)

The upper sign is chosen if v � .rsun � rmag/ � 0 and the lower sign is chosen
if v � .rsun � rmag/ > 0, where v is the spacecraft velocity vector in inertial
coordinates computed from the onboard ephemeris. Note that binary decisions are
based on velocity and magnetic field vectors computed in the inertial frame from
the ephemeris, in order to prevent toggling arising from noisy measurements; but
that the TAM-sensed magnetic field vector in the body frame is used to compute the
actual pointing vector.
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Fig. 7.22 Requirements specification for SAMPEX special pointing mode

The angle error in Eq. (7.90) is generally small, but it is on the order of 90ı
during transitions between parallel pointing and perpendicular pointing. In these
cases, the wheel is commanded in the direction that requires the smallest rotation
to null the angle error. Due to changing geometry however, some time during a
passage through a low field region, a 180ı pitch maneuver is generally required to
satisfy the avoidance requirement. The special pointing algorithm assures that any
180ı turns will be executed in a direction away from the velocity vector. Thus a
computed pitch error angle magnitude greater than 2.5 rad is taken to signify a large
reorientation maneuver. The sign of the x-axis component of the spacecraft velocity
vector v in the body frame is then used to determine the direction of this maneuver,
such that the instrument boresights are rotated away from the velocity vector rather
than toward it.
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In the high-field region, krmag1k > 3�104 nT, the target vector is to be perpendicular
to the body y-axis and as close as possible to parallel or antiparallel to the magnetic
field vector bmag. Thus the target vector is given by

u D ˙1q
b2mag1

C b2mag3

2
4
bmag1
0

bmag3

3
5 (7.97)

where the positive sign is used when SAMPEX is in the southern hemisphere
and the negative sign in the northern hemisphere, as determined from the onboard
ephemeris. In the high-field region the existing onboard velocity avoidance algo-
rithm is still used.

During coast mode the reaction wheel speed angular momentum is commanded
to the fixed value of the commanded momentum,Hc , rather than to its instantaneous
value at entry to coast mode as in the ORR mode. Since the total system angular
momentum is maintained at Hc by magnetic torquer commands, this has the effect
of halting spacecraft attitude motion in coast mode. This change was necessitated by
the observation that coast mode could be entered during one of the rapid 90ı or 180ı
maneuvers of the spacecraft, and holding the spacecraft y-axis rate constant at a high
value could result in several rotations during coast mode. This undesirable behavior
was actually seen in some simulations, but is avoided by the final pointing law.

7.7.4 Reaction Wheel Control Law

The single reaction wheel is used to drive down the angle error shown in Eq. (7.90).
A proportional-integral-derivative (PID) control law [17] is used to command the
wheel torque, denoted by Lw. The derivative signal is computed using a simple
finite-difference approach:

Pe � ek � ek�1
�t

� ederk (7.98)

The integral portion, denoted by eint, is computed by simply using

eintk D eintk�1
C ek �t (7.99)

The torque control law is then given by

Lw
k D kp ek C kd ederk C ki eintk (7.100)

where kp , kd and ki are the proportional, derivative and integral gains, respectively,
given as follows for the various modes:
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• All Modes: kp D !2nJ22, kd D 2 � !nJ22, and ki D .kp kd /=.10 J22/.
• Vertical and ORR Modes: � D p2=2 and !n D 0:02.
• Special Pointing Mode: � D p2=2 and !n D 0:01.

An integral limit is also imposed for all modes, which is set to 3 � 10�3=ki . Note
that unlike the magnetic control system no filter is used to filter noisy measurements
in the wheel control law. This is because the measurement errors do not significantly
affect the overall wheel control performance to meet the desired specifications. This
is an important point to make about the design phase of any spacecraft control
system. Start with the simplest design for analysis purposes and then add one
component, such as a Kalman filter, at a time to see how the performance improves.
Once the desired specifications are met within some desired confidence and safety
factor then it is usually best to not add any more components. A system that is
over-designed may lead to unknown errors that may subsequently cause catastrophic
failures. The SAMPEX design shows how simplicity often can lead to a successful
control design that far exceeds initial lifetime performance specifications.

7.7.5 Simulations

This section provides simulation results for all three modes. The epoch is September
16, 2011 at midnight. The simulation runtime is 5 h with a sampling interval of 5 s
for all sensors and actuators. The position and velocity vectors from the onboard
ephemeris are given by

r.t0/ D
2
4
3335:973299

2571:763319

�5370:931739

3
5 km; v.t0/ D

2
4
3:530941

4:977268

4:566940

3
5 km/s (7.101)

For these conditions the orbital altitude varies from an apogee of 450 km to a perigee
of 390 km, which is far lower than the initial orbit insertion because of atmospheric
drag that decayed the orbit over the lifetime of the mission. But this orbit is still
sufficient to perform the required science modes. The onboard orbit propagator
includes the effects of drag and higher-order gravity terms. Here only the effects
of J2 are simulated because drag has an insignificant effect on the orbit over 5 h.
The dynamic model is given by [36]

Rr D � �

krk3 C aJ2 (7.102)

where aJ2 is given by Eq. (10.103a) with J2 from Table 10.2, � D 3:98601 �
105 km3/s2, and R˚ D 6378:1363 km. A plot of SAMPEX longitude and latitude
for this simulation is given in Fig. 7.23. The inclination of 82ı is clearly seen in this
plot. A 10th-order IGRF model is used to generate the reference magnetic field using
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Fig. 7.23 SAMPEX ground track

the inertial position of the satellite. The inertial Sun vector is calculated simply from
the epoch. All measurements are produced using the noise and resolution parameters
discussed previously.

The rotation dynamic models are given by

Pq D 1

2
�.q/! (7.103a)

PH D �! �HC Lmag (7.103b)

PHw D Lw (7.103c)

where ! D J�1.H � Hw j/. For all simulations the initial quaternion is given by
the identity quaternion, and the system and wheel momenta are set to zero. For the
first 2 h the wheel is turned off in order to reorient the spacecraft so that the y-axis
is pointed towards the Sun using magnetic torquers only.

As previously mentioned the onboard attitude determination algorithm used
the TRIAD algorithm, which ignores some part of the measurement. In order to
provide more accurate attitude estimates Davenport’s q method is applied here (see
Sect. 5.3). Using this approach allows us to increase the Kalman gain to 0.04 instead



7.7 SAMPEX Control Design 335

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

0

20

40

60

80

100

Su
n 

A
ng

le
 E

rr
or

 (
D

eg
)

Time (Hr)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−200

−150

−100

−50

0

50

100

150

200

P
oi

nt
in

g 
A

ng
le

 E
rr

or
 (

D
eg

)

Time (Hr)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

W
he

el
 M

om
en

tu
m

 (
N

m
s)

Time (Hr)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5
0

0.5
1 x 10−3

x 10−3

x 10−3
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1
−0.5

0
0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5
0

0.5
1

L
m

ag
1 
 (

N
m

)
L

m
ag

2 
 (

N
m

)
L

m
ag

3 
 (

N
m

)

Time (Hr)

ba

dc

Fig. 7.24 SAMPEX vertical pointing mode. (a) Sun angle error. (b) Pointing angle error. (c)
Wheel momentum. (d) Magnetic control torques

of 0.01, which actually gives better filtered estimates than the TRIAD method using
a lower Kalman gain. Simulation results for the vertical pointing mode are shown
in Fig. 7.24. The Sun error angle is shown in Fig. 7.24a. After 2 h the Sun error
angle is about 10ı. Figure 7.24b shows the pointing error. Note that since the wheel
is turned off for the first 2 h there are large fluctuations in the error angle. The wheel
momentum is shown in Fig. 7.24c. After 2 h the wheel is turned on and drives the
error angle to near zero. The magnetic control torques are shown in Fig. 7.24d. Note
the large control torques at the beginning of the simulation run, which are required
to reorient the y-axis along the Sun line. After that period only minimal control
torques are required. Simulation results for the orbit rate rotation mode are shown in
Fig. 7.25. Results are very similar to the vertical pointing mode results. Simulation
results for the special pointing mode are shown in Fig. 7.26. Note that unlike the
other two modes, the error angle is not always maintained at zero. The fluctuations
are due to achieving the “best possible” angle given the constraints of the geometry
from the orbit position and spacecraft orientation requirements, particularly the Sun
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Fig. 7.25 SAMPEX orbit rate rotation mode. (a) Sun angle error. (b) Pointing angle error. (c)
Wheel momentum. (d) Magnetic control torques

line pointing requirement. Still, the desired pointing is achieved enough to satisfy
the special pointing mode requirements.

It is important to note that although the control laws and filter developed for
SAMPEX were very simple, they were proven to be extremely effective. Extended
Kalman filters are widely used for onboard attitude estimators, even though filter
stability cannot be guaranteed. Many, if not most, modern-day attitude controllers
are very simple PID controllers. For example, the actual WMAP spacecraft uses a
simple PID controller that is not asymptotically stable from a theoretical point of
view [3]. This leads to a “bias” in the control error signal, which was overcome by
using a simple feed-forward term. Still the attitude control design meets the desired
mission objectives because attitude knowledge accuracy is more important than
pointing accuracy for the WMAP spacecraft. The SAMPEX and WMAP attitude
control designs epitomize the notion of “keep it simple” if sufficient confidence
can be obtained that the controllers will meet mission objectives. Future spacecraft
control designs will most likely gravitate more towards Lyapunov-based controllers
as confidence grows in their ability to achieve desired mission objectives. Although
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Fig. 7.26 SAMPEX special pointing mode. (a) Sun angle error. (b) Pointing angle error. (c)
Wheel momentum. (d) Magnetic control torques

more complicated than simple PID controllers, these more advanced control laws
may require fewer contingency mode analyses than simpler controllers, which may
in fact reduce the time to design the actual spacecraft control system.

Problems

7.1. Consider the following modified version of the control law given in
Eq. (7.7) [49]:

L D �kp J ıq1W3 � kd J!C Œ!��J!

The error-quaternion given in Eq. (7.2) is represented by

ıq �
�
ıq1W3
ıq4

�
D
�
�e sin.ı#=2/

cos.ı#=2/

�
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where �e is the axis of rotation and ı# is the angle. Substitute the control law
into Eq. (7.1) and derive a second-order differential equation that is a function of
ı# , kp and kd only. (Hint: the expression shown in Problem 3.3 may be helpful).
Next, using a small angle approximation find a linear form of this equation that
leads to the classic form given in Sect. 12.2.1.1 of ı R#2 C 2 � !n ı P# C !2nı# D 0.
Determine the relationships of kp and kd to !n and �. Assuming that !n D 0:1

rad/s and � D p2=2 determine the associated kp and kd values. Using these kp and
kd values in the above modified control law perform a simulation study using the
inertia matrix and initial conditions described in Example 7.1.

7.2. Consider the following modified version of the control law given in Eq. (7.7):

L D �kp sign.ıq4/J ıq1W3 � kd J!C Œ!��J!

Substitute the control law into Eq. (7.1) and show that the closed-loop differential
equation for ıq4 is given by

ı Rq4 C
�
ıq4 ı Pq4
.1 � ıq24/

C kd
�
ı Pq4 C 1

2
kp jıq4j ıq4 D 1

2
kp sign.ıq4/

How does this differential equation change if the control law in Example 7.1 is used
instead, i.e. without sign.ıq4/? Numerically integrate the differential equation for
ıq4 for a total time of 30 min using both control laws; one with sign.ıq4/ and one
without it. Run two different initial conditions for both control laws: (1) ıq4.t0/ D
0:5 and ı Pq4.t0/ D 0, and (2) ıq4.t0/ D �0:5 and ı Pq4.t0/ D 0. Use the following
control gains for both control laws: kp D 0:01 and kd D 2. Compare the trajectories
of ıq4 over time in all cases and discuss how using sign.ıq4/ produces the shortest
distance. Also discuss the case using the following initial conditions: ıq4.t0/ D 0:5
and ı Pq4.t0/ D �1.

7.3. Redo the simulation shown in Example 7.1. Next, using the same gains from
this example, implement the controller shown in Eq. (7.14). Try both the plus and
minus signs in the control law. Compute the function in Eq. (7.9) for each of the
three controllers and plot them over time. Also plot the rotation angle of error, ı# ,
for each of the three controllers. Discuss the differences seen in the responses.

7.4. Prove that the control law in Eq. (7.13) produces a globally asymptotic stable
response for the closed-loop system.

7.5. Another attitude regulation control law involves using the attitude matrix
directly [34]:

L D �kp s �Kd !

where kp is a positive scalar, Kd is a diagonal matrix with positive elements and
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s D
3X
iD1

ri Œ.ıA ei /��ei

where e1 D Œ1 0 0�T , e2 D Œ0 1 0�T , e3 D Œ0 0 1�T , and r1, r2, and r3 are positive
scalars. The attitude error, ıA, is given by ıA D AATc , where Ac is a constant
attitude matrix. Prove that this control law produces an asymptotically stable closed-
loop system by using the following candidate Lyapunov function:

V D 1

2
!T J!C kp tr.R �R ıA/

where R is a diagonal matrix with elements given by r1, r2, and r3. First show that
tr.R �R ıA/ � 0. Note that the equality is given only when ıA D I3.

Next, consider the following gains:

kp � ˛

trR

Kd � ˇ

2
666664

1

1C j!1j 0 0

0
1

1C j!2j 0

0 0
1

1C j!3j

3
777775

where ˛ and ˇ are positive scalars. Show that kL.t/k1 � ˛ C ˇ. Begin by using
the following relation:

kL.t/k1 D kkp sCKd !k1
� kp ksk1 C kKd !k1

Perform a simulation using the inertia matrix and initial conditions given in
Example 7.1 with this control law. Choose the following gains: ˛ D 50, ˇ D 500,
and R D I3.
7.6. Prove the relation given in Eq. (7.20). Next, show that the time derivative of
ıq4 is ı Pq4 D 1

2
.!c �!/T ıq1W3.

7.7. Prove that the control law in Eq. (7.36) produces a globally asymptotic stable
response for the closed-loop tracking system.

7.8. In this exercise you will design a controller that tracks an LVLH attitude.
Consider the following orbital elements: a D 26; 559 km, e D 0:704482, M0 D
12:9979ı, i D 63:1706ı, ˝ D 206:346ı, and ! D 281:646ı. Note that this is a
highly eccentric orbit. Compute the initial position and velocity using Table 10.1,
and then propagate the orbit for an 18-h period in 10-s intervals. Next, compute the
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desired LVLH attitude using Eq. (2.79) and angular rate using Eq. (3.175). Also find
an analytical expression for the derivative of Eq. (3.175). Assume that the actual
initial attitude is given by the identity matrix and the actual initial angular rate is
given by zero. The inertia matrix is given by

J D
2
4
10000 0 0

0 9000 0

0 0 12000

3
5 kg-m2

Finally, using the control law given by Eq. (7.36) pick values of kp and kd so that
the actual attitude and angular rate converges to the desired attitude and angular
rate in about 10 min. Show plots of the orbit, the first three components of the error
quaternion and the angular velocity errors using Eq. (7.31).

7.9. Consider the case of tracking a desired quaternion with kinematics given by

Pqc D 1

2
�.qc/!c

where !c is the desired angular velocity vector. The error quaternion is given by
ıq D q˝ q�1

c . Let us assume that the closed-loop kinematic equation is desired to
have the following prescribed linear form [32]:

ı Rq1W3 C L2ı Pq1W3 C L1ıq1W3 D 0

where L1 and L2 are 3 � 3 gain matrices. Determine the control law that will yield
this closed-loop linear form. Next, assuming that both L1 and L2 are each given by
a scalar times identity matrix, with L1 D `1I3, L2 D `2I3, show that your derived
control law reduces down to

L D Œ!��J!C J


ıA P!c � Œ!�� ıA!c � `2ı! � 2

�
4`1 � .ı!T ı!/

4 ıq4

�
ıq1W3

�

with

ıA D A.q/AT .qc/
ı! D ! � ıA!c

This control law is clearly singular when ıq4 D 0. Do the same issues arise in the
control law that uses general 3 � 3 L1 and L2 gain matrices?

7.10. Redo the simulation shown in Example 7.4. Pick different values for the
PWPF parameters to see how they affect the overall performance.

7.11. Redo the simulation shown in Example 7.6. Pick different values for k to see
how they affect the overall performance.
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7.12. Redo the simulation shown in Example 7.7. Pick different values for the
various parameters in the control law as well as different noise levels to see how
they affect the overall performance.
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Chapter 8
Quaternion Identities

The purpose of this chapter is to present a collection of vector and quaternion
identities that are useful for control and estimation computations. Many of them
used throughout this text. Several appear in Chap. 2 but are repeated here for
convenience.

8.1 Cross Product Identities

The 3 � 3 skew-symmetric cross-product matrix is defined as

Œu�� �
2
4
0 �u3 u2
u3 0 �u1
�u2 u1 0

3
5 (8.1)

giving Œu��v D u � v. Since Œu��u D 0, Œu�� must be singular. The eigenvalues
of Œu�� are given by 	1 D 0 and 	2; 3 D ˙ikuk. Some useful identities for the
cross-product matrix include [6]:

Œu��T D �Œu�� (8.2a)

adj .Œu��/ D u uT (8.2b)

Œu��v D �Œv��u (8.2c)

Œu��Œv�� D � �uT v
	
I3 C v uT (8.2d)

Œu��Œv��w D u � .v � w/ D �uTw
	

v � �uT v
	

w (8.2e)

Œu��3 D �kuk2Œu�� (8.2f)

Œu��Œv�� � Œv��Œu�� D v uT � u vT D Œ.u � v/�� (8.2g)

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__8,
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346 8 Quaternion Identities

.I3 � Œu��/.I3 C Œu��/�1 D 1

1C kuk2
˚
.1 � kuk2/I3 C 2u uT � 2Œu��� (8.2h)

ku � vk2I3 D kuk2v vTCkvk2u uT � �uT v
	�

u vT C v uT
	C .u � v/.u � v/T

(8.2i)

where In is an n � n identity matrix. Some useful identities involving the cross-
product matrix and an arbitrary 3 � 3 matrix M are:

tr.M/Œu�� DMŒu��C Œu��MT C Œ.MT u/�� (8.3a)

MŒu��MT D Œfadj.MT /ug�� (8.3b)

Œf.Mu/ � .Mv/g�� DMŒ.u � v/��MT (8.3c)

.Mu/ � .Mv/ D adj.MT / .u � v/ (8.3d)

Œu��Œtr.M/I3 �M�Œu��TD .uTMu/I3� u uTMT�MT u uTC kuk2MT (8.3e)

where tr denotes the trace operator and adj denotes the adjoint matrix. If we write
M in terms of its columns

M D �u1 u2 u3
�

(8.4)

then

det.M/ D uT1 .u2 � u3/ (8.5)

where det denotes the determinant. Also, if A is an orthogonal matrix with
determinant 1, then from we have Eq. (8.3b)

AŒu��AT D Œ.Au/�� (8.6)

These cross product relations are useful in proving many of the quaternion identities
shown in this chapter.

8.2 Basic Quaternion Identities

The quaternion has a vector part, q1W3, and a scalar part, q4:

q �

2
664

q1
q2
q3
q4

3
775 �

�
q1W3
q4

�
(8.7)
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We define two 4 � 4 matrices analogous to the 3 � 3 cross-product matrix:

Œq˝� �
�
q4 I3 � Œq1W3�� q1W3
�qT1W3 q4

�
D ��.q/ q

�
(8.8a)

Œqˇ� �
�
q4 I3 C Œq1W3�� q1W3
�qT1W3 q4

�
D ��.q/ q

�
(8.8b)

with �.q/ and �.q/ being the 4 � 3 matrices

�.q/ �
�
q4 I3 � Œq1W3��
�qT1W3

�
(8.9a)

�.q/ �
�
q4 I3 C Œq1W3��
�qT1W3

�
(8.9b)

These matrices provide two alternative products of two quaternions q and Nq:

q˝ Nq D Œq˝� Nq (8.10a)

qˇ Nq D Œqˇ� Nq (8.10b)

The first of these, denoted by ˝, has proved to be more useful in attitude analysis.
It follows from these definitions that

q˝ Nq D Nqˇ q (8.11)

Quaternion multiplication is associative, q˝. Nq˝ NNq/ D .q˝ Nq/˝ NNq and distributive,
q ˝ . Nq C NNq/ D q ˝ Nq C q ˝ NNq. Quaternion multiplication is not commutative in
general, q˝ Nq ¤ Nq˝ q, paralleling the situation for matrix multiplication. In those
cases for which q ˝ Nq D Nq ˝ q, the quaternions q and Nq are said to commute.
Analogous equations hold for the product qˇ Nq.

The identity quaternion

Iq �
�

03
1

�
(8.12)

obeys Iq ˝ q D q˝ Iq D Iq ˇ q D qˇ Iq D q, as required of the identity.
The conjugate quaternion q� is obtained, in analogy with the complex conjugate,

by changing the sign of the three-vector part:

q� �
��q1W3
q4

�
D T q (8.13)

where

T �
��I3 03�1
01�3 1

�
(8.14)
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Note that T 2 D 1, so T �1 D T . The conjugate of the product of two quaternions Nq
and q is the product of the conjugates in the opposite order:

. Nq˝ q/� D q� ˝ Nq� (8.15)

The product of a quaternion with its conjugate is equal to the square of its norm
times the identity quaternion

q˝ q� D q� ˝ q D qˇ q� D q� ˇ q D kqk2 Iq (8.16)

These relations and the associativity of quaternion multiplication can be used to
show that

kNq˝ qk D kNqˇ qk D kNqkkqk (8.17)

The inverse of any quaternion having nonzero norm is defined by

q�1 � q�=kqk2 (8.18)

so that q ˝ q�1 D q�1 ˝ q D q ˇ q�1 D q�1 ˇ q D Iq , as required by the
definition of an inverse. The inverse of the product of two quaternions is the product
of the inverses in the opposite order . Nq˝ q/�1 D q�1 ˝ Nq�1.

Some useful identities are given by

Œq�˝� D Œq˝�T D T Œqˇ� T (8.19a)

Œq�ˇ� D Œqˇ�T D T Œq˝� T (8.19b)

Œq˝�Œ Nqˇ� D Œ Nqˇ�Œq˝� (8.19c)

Œq˝�Œq�˝� D Œq˝�Œq˝�T D kqk2I4 (8.19d)

Œqˇ�Œq�ˇ� D Œqˇ�Œqˇ�T D kqk2I4 (8.19e)

Œq˝��1 D kqk�2Œq�˝� D Œq�1˝� (8.19f)

Œqˇ��1 D kqk�2Œq�ˇ� D Œq�1ˇ� (8.19g)

ŒIq˝� D ŒIqˇ� D I4 (8.19h)

Œq˝�Iq D Œqˇ�Iq D q (8.19i)

Œ.q˝ Nq/˝� D Œq˝�Œ Nq˝� D kqk�2Œq˝�Œ. Nq˝ q/˝�Œq˝�T

D kNqk�2Œ Nq˝�T Œ. Nq˝ q/˝�Œ Nq˝� (8.19j)

Œ.q˝ Nq/ˇ� D Œ Nqˇ�Œqˇ� D kqk�2Œqˇ�T Œ. Nq˝ q/ˇ�Œqˇ�
D kNqk�2Œ Nqˇ�Œ. Nq˝ q/ˇ�Œ Nqˇ�T (8.19k)
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8.3 The Matrices �.q/, �.q/,˝.!/, and  .!/

The matrices �.q/ and �.q/ satisfy the identities

�T .q/�.q/ D �T .q/�.q/ D kqk2I3 (8.20a)

�.q/�T .q/ D �.q/�T .q/ D kqk2I4 � qqT (8.20b)

�T .q/q D �T .q/q D 03 (8.20c)

�T .q/ Nq D ��T . Nq/q (8.20d)

�T .q/ Nq D ��T . Nq/q (8.20e)

�T .q/�. Nq/ D �T . Nq/�.q/ (8.20f)

�T .q/�. Nq/ D �T . Nq/�.q/ (8.20g)

�.q/�T . Nq/C q NqT D Œq˝�Œ Nq�˝� D Œ.q˝ Nq�/˝� (8.20h)

�.q/�T . Nq/C q NqT D Œqˇ�Œ Nq�ˇ� D Œ. Nq� ˝ q/ˇ� (8.20i)

We will overload the quaternion product notation to allow us to multiply a three-
component vector ! and a quaternion, using the definitions

!˝ q �
�
!

0

�
˝ q D Œ!˝�q D qˇ! D Œqˇ�! D �.q/! (8.21a)

!ˇ q �
�
!

0

�
ˇ q D Œ!ˇ�q D q˝! D Œq˝�! D �.q/! (8.21b)

We also use the alternate notation

˝.!/ � Œ!˝� D
��Œ!�� !
�!T 0

�
(8.22a)

� .!/ � Œ!ˇ� D
�
Œ!�� !
�!T 0

�
(8.22b)

Note that the matrices ˝.!/ and � .!/ are both skew-symmetric with eigenvalues
	1; 3 D ik!k and 	2; 4 D �ik!k.

Some useful identities valid for any 3 � 1 vectors b, r, and ! are given by [6]

˝.b/� .r/ D � .r/˝.b/ (8.23a)

˝.!/q D �.q/! (8.23b)

� .!/q D �.q/! (8.23c)
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Œq˝� � .!/ D � .!/ Œq˝� (8.23d)

Œqˇ�˝.!/ D ˝.!/ Œqˇ� (8.23e)

˝.!/�.q/ D ��.q/Œ!�� � q!T (8.23f)

� .!/�.q/ D �.q/Œ!�� � q!T (8.23g)

˝2.!/ D � 2.!/ D �k!k2I4 (8.23h)

detŒ˝.!/� D detŒ� .!/� D k!k4 (8.23i)

�T .q/˝.!/�.q/ D �kqk2Œ!�� (8.23j)

�T .q/� .!/�.q/ D kqk2Œ!�� (8.23k)

˝.b � r/ D 1

2
Œ˝.r/˝.b/ �˝.b/˝.r/� (8.23l)

� .b � r/ D 1

2
Œ� .b/� .r/ � � .r/� .b/� (8.23m)

8.4 Identities Involving the Attitude Matrix

The four-component quaternion representation of attitude is related to the Euler
axis/angle representation by

q
kqk D

1q
q24 C kq1W3k2

�
q1W3
q4

�
D
�

e sin.#=2/
cos.#=2/

�
(8.24)

where e is a unit vector corresponding to the axis of rotation and # is the angle of
rotation. Then the attitude matrix is given by

A.q/ � kqk�2 �T .q/�.q/ D kqk�2
n
.q4I3 � Œq1W3��/2 C q1W3 qT1W3

o

D kqk�2 ˚�q24 � kq1W3k2
	
I3 C 2q1W3 qT1W3 � 2q4Œq1W3��

� (8.25)

which agrees with the Euler axis/angle representation of Eq. (2.108).
The rotation group has only three degrees of freedom, so a quaternion has more

components than it needs. In fact, it is clear from Eq. (8.25) that the attitude matrix
does not depend on the quaternion norm in any way.1 For this reason, the attitude
quaternion is usually defined with unit norm, kqk D 1. This is analogous to

1Some authors define the attitude matrix without the factor of kqk�2 even if the quaternion is not
normalized, with the result that the attitude matrix is not guaranteed to be orthogonal.
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requiring that e be a unit vector in the Euler axis/angle parameterization, and is
the convention adopted in Chap. 2 in this book. For greater generality, however,
the identities in this chapter will not assume that the quaternion obeys the norm
constraint. If the attitude quaternions are normalized, all the quaternion norms in
the following identities have the value unity and can be safely ignored.

Now Eqs. (8.20a)�(8.20c) can be used to show that

A�1.q/ D AT .q/ D A.q�/ (8.26)

and that serial rotations are easily accomplished by multiplying quaternions,

A. Nq/A.q/ D A. Nq˝ q/ D A.qˇ Nq/ (8.27)

regardless of whether or not the quaternions are normalized. The order of multi-
plication of the quaternions using the ˝ product is the same as that of the attitude
matrix, which is a major advantage of this multiplication convention.

Quaternion multiplication can be used in place of matrix multiplication to
transform a three-component vector [6]:

q˝!˝ q�1 D kqk�2 q˝
�
!

0

�
˝ q� D

�
A.q/!
0

�
(8.28a)

q�1 ˝!˝ q D kqk�2 q� ˝
�
!

0

�
˝ q D

�
AT .q/!

0

�
(8.28b)

Some useful identities are [6]

Œq˝�Œq�1ˇ� D Œq�1ˇ�Œq˝� D
�
A.q/ 03�1
01�3 1

�
(8.29a)

Œq˝�˝.!/Œq�1˝� D ˝ .A.q/!/ (8.29b)

Œq�1˝�˝.!/Œq˝� D ˝ �
AT .q/!

	
(8.29c)

Œq�1ˇ�� .!/Œqˇ� D � .A.q/!/ (8.29d)

Œqˇ�� .!/Œq�1ˇ� D � �AT .q/!	 (8.29e)

Œq�1˝��.q/ D
�
AT .q/
01�3

�
(8.29f)

Œq�1ˇ��.q/ D
�
A.q/
01�3

�
(8.29g)

Identities involving Œ.q˝ Nq�/˝� are given by

Œ.q˝ Nq�/˝� D �.q/A.q˝ Nq�/�T . Nq/C q NqT (8.30a)

Œ.q˝ Nq�/˝��. Nq/ D kNqk2�.q/A.q˝ Nq�/ (8.30b)
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�T .q/Œ.q˝ Nq�/˝� D kqk2A.q˝ Nq�/�T . Nq/ (8.30c)

�T .q/Œ.q˝ Nq�/˝��. Nq/ D kqk2kNqk2A.q˝ Nq�/ (8.30d)

Identities involving Œ. Nq� ˝ q/ˇ� are given by

Œ. Nq� ˝ q/ˇ� D �.q/A.q� ˝ Nq/�T . Nq/C q NqT (8.31a)

Œ. Nq� ˝ q/ˇ��. Nq/ D kNqk2�.q/A.q� ˝ Nq/ (8.31b)

�T .q/Œ. Nq� ˝ q/ˇ� D kqk2A.q� ˝ Nq/�T . Nq/ (8.31c)

�T .q/Œ. Nq� ˝ q/ˇ��. Nq/ D kqk2kNqk2A.q� ˝ Nq/ (8.31d)

Equations (8.19j) or (8.19k) can be used to exchange Nq� ˝ q and q˝ Nq� if needed.
We now derive some useful identities for attitude determination. If b and r are

any two three-component vectors, then

kqk2bT A.q/r D bT �T .q/�.q/r D Œ˝.b/q�T � .r/q D �qT˝.b/� .r/q (8.32)

where

�˝.b/� .r/ D
�
B C BT � tr.B/I3 .b � r/

.b � r/T tr.B/

�
� K (8.33)

with

B � b rT (8.34)

This was shown in Sect. 5.3 to lead to Davenport’s q method [7]. Equations (8.23a)
and (8.23h) can be used to show that

K D �˝.b/� .r/ D 1

2

��kbk2 C krk2	 I4 � CTC
�

(8.35)

where

C � � .r/ �˝.b/ D
�
Œ.bC r/�� �.b � r/
.b � r/T 0

�
(8.36)

This has been used to develop a square-root attitude determination algorithm [5].
Equations (8.23b) and (8.23c) lead to an identity closely related to Eq. (8.35) that is
used in a measurement model that is linear in the quaternion [1]:

�.q/r ��.q/b D Cq (8.37)
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Also, if b D A.q/r, then

2�.q/Œb���T .q/ D 2�.q/Œr���T .q/ D kqk2C (8.38)

Other identities are given by

�.q/A.q/ D �.q/ (8.39a)

˝ .A.q/!/q D � .!/q (8.39b)

�T .q/� .!/�.q/ D kqk2ŒA.q/!�� (8.39c)

�T .q/˝.!/�.q/ D �kqk2ŒAT .q/!�� (8.39d)

� .� .!/q/ D � .!/�.q/ D ˚�.q/Œ!�� � q!T
�
AT .q/ (8.39e)

� .˝.!/q/ D ˝.!/�.q/ D � ˚�.q/Œ!��C q!T
�
A.q/ (8.39f)

� .˝.!/q/ D � �AT .q/!	�.q/ D �.q/Œ!�� � q!T (8.39g)

� .� .!/q/ D ˝ .A.q/!/ �.q/ D ��.q/Œ!�� � q!T (8.39h)
��
�T .q/K q

	�� D kqk2 �A.q/BT � B AT .q/� (8.39i)

�T .q/K q D kqk2Œb��A.q/r (8.39j)

�T .q/K q D �kqk2Œr��AT .q/b (8.39k)

with K and B given by Eqs. (8.33) and (8.34), respectively. All the identities in this
section except Eq. (8.38) are valid for any 3 � 1 vectors b, r, and !.

We now use Eqs. (8.25) and (8.23c) to derive the measurement sensitivity matrix
used in the additive extended Kalman filter [3]. Our goal is to find an expression for

H � @

@q
ŒA.q/r� D @

@q

�kqk�2 �T .q/� .r/q
�

(8.40)

It is important to include the factor of kqk�2 when evaluating the partial derivatives
because the components of q are varied independently during this process, violating
the norm constraint. Evaluating the partials in Eq. (8.40) gives

H D kqk�2
�
@

@q
�T .q/

�
� .r/qC kqk�2�T .q/� .r/ � 2 kqk�4�T .q/� .r/q qT

(8.41)

Note in the first term that � .r/q � Nq is an unnormalized quaternion that is assumed
constant during the differentiation, so we can use Eq. (8.20d) to get

�
@

@q
�T .q/

�
� .r/q D @

@q

�
�T .q/ Nq� D � @

@q

�
�T . Nq/q� D ��T . Nq/ D �T .q/� .r/

(8.42)
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where the last equality results from Eq. (8.39e). Collecting terms and using
Eq. (8.20b) yields

H D 2kqk�4�T .q/� .r/
�kqk2I4 � q qT

	 D 2kqk�4�T .q/� .r/�.q/�T .q/

(8.43)

Then applying Eq. (8.39c) gives the final result

H D 2kqk�2ŒA.q/r�� �T .q/ (8.44)

Note that kqk D 1 in most applications and that the sensitivity matrix in the
multiplicative filter is ŒA.q/r�� [3].

8.5 Error Quaternions

A common quantity used in estimation and control is the error quaternion between
two quaternions, denoted by

ıq �
�
ıq1W3
ıq4

�
D q˝ Nq�1 D kNqk�2q˝ Nq� (8.45)

where Nq is the estimated quaternion in estimation theory or the desired quaternion in
control theory. The rules of quaternion multiplication show that kıqk D kqk=kNqk,
and that ıq1W3 and ıq4 are given by

ıq1W3 D kNqk�2 �T . Nq/q D �kNqk�2 �T .q/ Nq (8.46a)

ıq4 D kNqk�2 NqT q (8.46b)

If ıq is normalized and is close to the identity quaternion, then ıq1W3 � ˛=2 and
ıq4 � 1, where ˛ is a vector of small angle rotations. As q approaches Nq, then ıq1W3
and ˛ both approach zero.

A “space-referenced error quaternion,” ıqI , is defined by

ıqI �
�
ıq1W3I
ıq4

�
D Nq�1 ˝ q D Nq�1 ˝ ıq˝ Nq (8.47a)

ıq D Nq˝ ıqI ˝ Nq�1 (8.47b)

Quaternion multiplication shows that ıq4I D ıq4 and that ıq1W3I is given by

ıq1W3I D kNqk�2�T . Nq/q D �kNqk�2�T .q/ Nq (8.48)
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The meaning of the space-referenced error quaternion is clearly shown by2

ıq1W3 D A.q/ıq1W3I D A. Nq/ıq1W3I (8.49a)

ıq1W3I D AT .q/ıq1W3 D AT . Nq/ıq1W3 (8.49b)

Identities involving the error quaternion are given by [2]

�T . Nq/�.q/ D kNqk2 fıq4I3 C Œıq1W3��g (8.50a)

�
�T . Nq/�.q/��1 D kNqk�2 I3 C A.ıq/

2ıq4
(8.50b)

�
�T . Nq/�.q/��1 ıq1W3 D kNqk�2 ıq1W3

ıq4
(8.50c)

�T . Nq/�.q/ D kNqk2 fıq4I3 � Œıq1W3I��g (8.50d)

�
�T . Nq/�.q/��1 D kNqk�2 I3 C A

T .ıqI /
2ıq4

(8.50e)

�
�T . Nq/�.q/��1 ıq1W3I D kNqk�2

ıq1W3I
ıq4

(8.50f)

A.ıq/ D A.q/AT . Nq/ D ��T . Nq/�.q/��1 �T .q/�. Nq/ (8.50g)

AT .ıqI / D AT .q/A. Nq/ D
�
�T . Nq/�.q/��1 �T .q/�. Nq/ (8.50h)

Note that the inverses of �T . Nq/�.q/ and �T . Nq/�.q/ are singular for 180ı errors.
Equation (8.50) can used to develop a control law that produces linear error
dynamics [2, 4]. Also note that both Eqs. (8.50c) and (8.50f) are related to the
Rodrigues parameters or Gibbs vector.

8.6 Quaternion Kinematics

The quaternion kinematic equation is given by

Pq D 1

2
!˝ q D 1

2
˝.!/q D 1

2
�.q/! (8.51)

Note that qT Pq D 0, so this equation preserves the quaternion norm. A major
advantage of using normalized quaternions is that the kinematic equation is linear in
the quaternion and is also free of singularities. Differentiating Eq. (8.51) and using
Eq. (8.23h) gives

2These equations are true even though A.q/ ¤ A.Nq/ because A.ıq/ıq1W3 D ıq1W3.



356 8 Quaternion Identities

Rq D 1

2
�.q/ P!C 1

2
˝.!/ Pq D 1

2
�.q/ P! � 1

4
k!k2q (8.52)

Substituting a dynamics equation for P! relates the quaternion to a torque input.
The inverse kinematic equation is given by multiplying Eq. (8.51) by �T .q/ and

applying Eq. (8.20a), yielding

! D 2kqk�2 �T .q/ Pq (8.53)

If we define the “space-referenced angular velocity,” !I , by

�
!I

0

�
D q�1 ˝!˝ q D

�
AT .q/!

0

�
(8.54)

then the following relationships can be derived:

q� ˝! D !I ˝ q� (8.55a)

� .!/q� D �.q�/! D ˝.!I /q� D �.q�/!I (8.55b)

!˝ q D q˝!I (8.55c)

˝.!/q D �.q/! D � .!I /q D �.q/!I (8.55d)

The definition of the attitude matrix in Eq. (8.25) can be used to show that the
quaternion kinematic equation in Eq. (8.51) can also be written as

Pq D 1

2
�.q/!I D 1

2
� .!I /q (8.56a)

!I D 2kqk�2 �T .q/ Pq (8.56b)

The derivative of the matrix �.q/ is given by [6]

d

dt
�.q/ D 1

2
� .!I /�.q/ D 1

2
�.q/Œ!�� � 1

2
q!T

D 1

2
˝.!/�.q/C�.q/Œ!�� (8.57)

The derivative of the matrix �.q/ is given by

d

dt
�.q/ D 1

2
˝.!/�.q/ D �1

2
�.q/Œ!I�� � 1

2
q!TI

D 1

2
� .!I /�.q/ � �.q/Œ!I�� (8.58)
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The identity of the various forms of the right sides of Eqs. (8.57) and (8.58) is proven
by Eqs. (8.54), (8.39g), (8.23f), (8.39h), and (8.23g).

Derivatives of the matrices Œq˝� and Œqˇ� are given by [6]

d

dt
Œq˝� D 1

2
˝.!/Œq˝� D 1

2
Œq˝�˝.!I / (8.59a)

d

dt
Œqˇ� D 1

2
Œqˇ�� .!/ D 1

2
� .!I /Œqˇ� (8.59b)

where the identities in Eqs. (8.29c) and (8.29e) have been used in Eq. (8.59).
Taking the time derivative of Eq. (8.45) gives the kinematical relationship for the

error quaternion ıq:

d

dt
ıq D Pq˝ Nq�1 C q˝ d Nq�1

dt
D 1

2
!˝ q˝ Nq�1 C q˝ d Nq�1

dt

D 1

2
!˝ ıqC q˝ d Nq�1

dt
(8.60)

We now need to determine an expression for the derivative of Nq�1. The esti-
mated/desired quaternion kinematic model follows

PNq D 1

2
N!˝ Nq (8.61)

Taking the time derivative of Iq D Nq˝ Nq�1 gives

0 D PNq˝ Nq�1CNq˝ d Nq�1

dt
D 1

2
N!˝ Nq˝ Nq�1CNq˝ d Nq�1

dt
D 1

2
N!CNq˝ d Nq�1

dt

(8.62)

yielding

d Nq�1

dt
D �1

2
Nq�1 ˝ N! (8.63)

and thus

d

dt
ıq D 1

2

�
!˝ ıq � q˝ Nq�1 ˝ N!	 D 1

2
.!˝ ıq � ıq˝ N!/ (8.64)

We now define the following error angular velocity: ı! � ! � N!. Substituting
! D N!C ı! into Eq. (8.64) leads to

d

dt
ıq D 1

2
. N!˝ ıq � ıq˝ N!/C 1

2
ı!˝ ıq (8.65)
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Evaluating the quaternion products gives

d

dt
ıq1W3 D � N! � ıq1W3 C 1

2
.ıq4 ı! � ı! � ıq1W3/ (8.66a)

d

dt
ıq4 D �1

2
ı!T ıq1W3 (8.66b)

Equation (8.66a) can also be derived by differentiating Eq. (8.46a), leading to

d

dt
ıq1W3 D 1

2kNqk2
�
�T . Nq/�.q/! ��T .q/�. Nq/ N!� (8.67)

Equation (8.50a) can used to prove that Eq. (8.66a) is equivalent to Eq. (8.67).
We define the “space-referenced error angular velocity,” ı!I , by

ı!I � !I � N!I D AT .q/! � AT . Nq/ N! (8.68)

Note that ı!I ¤ AT ı! for either A.q/ or A. Nq/,3 but that Eq. (8.49b) gives

ıqT1W3Iı!I D
�
AT .q/ıq1W3

�T
AT .q/! � �AT . Nq/ıq1W3

�T
AT . Nq/ N! D ıqT1W3ı!

(8.69)

Following the derivation of Eq. (8.65), we can evaluate the derivative of ıqI as

d

dt
ıqI D 1

2
.ıqI ˝!I � N!I ˝ ıqI /

D 1

2
.ıqI ˝ N!I � N!I ˝ ıqI /C 1

2
ıqI ˝ ı!I (8.70)

which has the vector and scalar parts

d

dt
ıq1W3I D N!I � ıq1W3I C

1

2
.ıq4ı!I C ı!I � ıq1W3I / (8.71a)

d

dt
ıq4 D �1

2
ı!TI ıq1W3I (8.71b)

Equation (8.71a) can also be derived by differentiating Eq. (8.48), leading to

d

dt
ıq1W3I D

1

2kNqk2
�
�T . Nq/�.q/!I � �T .q/�. Nq/ N!I

�
(8.72)

Equation (8.50d) can used to prove that Eq. (8.71a) is equivalent to Eq. (8.72).

3An orthogonal transformation would preserve the norm, giving kı!Ik D kı!k, and it is not
difficult to show that kı!Ik2 D kı!k2 C 2!T ŒI3 � A.ı!/� N!.
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Some kinematic identities involving
�
�T . Nq/�.q/��1 are given by

2
�
�T . Nq/�.q/��1 �T .q/ PNq D A.ıq/ N! (8.73a)

2
�
�T . Nq/�.q/��1 �T .q/ RNq D A.ıq/ PN!C k N!k

2

2ıq4
ıq1W3 (8.73b)

2
�
�T . Nq/�.q/��1 �T . PNq/˝.!/q D

�
Œ!��C ıq1W3!T

ıq4

�
A.ıq/ N! (8.73c)
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Chapter 9
Euler Angles

This chapter presents explicit expressions for the attitude matrices and kinematic
matrices for all the 12 Euler and Tait-Bryan angle attitude representations. We first
present the attitude matrices for the symmetric and asymmetric sets. Then the
kinematic matrices B.�;  /, defined by Eq. (3.39), and their inverses are shown for
all the symmetric and asymmetric sets. These matrices are used in the kinematic
relations:

2
4
P�
P�
P 

3
5 D B.�;  /! (9.1)

where ! � Œ!1 !2 !3�T is the angular velocity vector, and

! D B�1.�;  /

2
4
P�
P�
P 

3
5 (9.2)

The abbreviated notation c � cos and s � sin is employed in Tables 9.1, 9.2,
9.3, 9.4.

Table 9.5 gives equations for converting the symmetric and asymmetric Euler
angle sets directly to quaternions, without the need to compute the attitude matrix
as an intermediate step.

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__9,
© Springer Science+Business Media New York 2014
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Table 9.1 Attitude matrix: six symmetric sets

Axes Attitude matrix

1�2�1

2
4

c� s� s� �c� s�
s� s c� c � s� c� s s� c C c� c� s 
s� c �c� s � s� c� c �s� s C c� c� c 

3
5

1�3�1

2
4

c� c� s� s� s�
�s� c �s� s C c� c� c c� s C s� c� c 
s� s �s� c � c� c� s c� c � s� c� s 

3
5

2�1�2

2
4

c� c � s� c� s s� s �s� c � c� c� s 
s� s� c� c� s�

c� s C s� c�c �s� c �s� s C c� c� c 

3
5

2�3�2

2
4

�s� s C c� c� c s� c �c� s � s� c� c 
�c� s� c� s� s�

s� c C c� c� s s� s c� c � s� c� s 

3
5

3�1�3

2
4

c� c � s� c� s s� c C c� c� s s� s 
�c� s � s� c� c �s� s C c� c� c s� c 

s� s� �c� s� c�

3
5

3�2�3

2
4

�s� s C c� c� c c� s C s� c� c �s� c 
�s� c � c� c� s c� c � s� c� s s� s 

c� s� s� s� c�

3
5

Table 9.2 Attitude matrix: six asymmetric sets

Axes Attitude matrix

1�2�3

2
4

c� c c� s C s� s� c s� s � c� s� c 
�c� s c� c � s� s� s s� c C c� s� s 

s� �s� c� c� c�

3
5

1�3�2

2
4

c� c s� s C c� s� c �c� s C s� s� c 
�s� c� c� s� c�

c� s �s� c C c� s� s c� c C s� s� s 

3
5

2�1�3

2
4

c� c C s� s� s c� s �s� c C c� s� s 
�c� s C s� s� c c� c s� s C c� s� c 

s� c� �s� c� c�

3
5

2�3�1

2
4

c� c� s� �s� c�
s� s � c� s� c c� c c� s C s� s� c 
s� c C c� s� s �c� s c� c � s� s� s 

3
5

3�1�2

2
4

c� c � s� s� s s� c C c� s� s �c� s 
�s� c� c� c� s�

c� s C s� s� c s� s � c� s� c c� c 

3
5

3�2�1

2
4

c� c� s� c� �s�
�s� c C c� s� s c� c C s� s� s c� s 
s� s C c� s� c �c� s C s� s� c c� c 

3
5
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Table 9.3 The matrix B.�;  /

Axes Symmetric sets Axes Asymmetric sets

1�2�1
1

s�

2
4
0 s c 
0 s� c �s� s 
s� �c� s �c� c 

3
5 1�2�3

1

c�

2
4

c �s 0

c� s c� c 0

�s� c s� s c�

3
5

1�3�1
1

s�

2
4
0 �c s 
0 s� s s� c 
s� c� c �c� s 

3
5 1�3�2

1

c�

2
4

c 0 s 
�c� s 0 c� c 
s� c c� s� s 

3
5

2�1�2
1

s�

2
4

s 0 �c 
s� c 0 s� s 

�c� s s� c� c 

3
5 2�1�3

1

c�

2
4

s c 0

c� c �c� s 0

s� s s� c c�

3
5

2�3�2
1

s�

2
4

c 0 s 
�s� s 0 s� c 
�c� c s� �c� s 

3
5 2�3�1

1

c�

2
4
0 c �s 
0 c� s c� c 

c� �s� c s� s 

3
5

3�1�3
1

s�

2
4

s c 0

s� c �s� s 0

�c� s �c� c s�

3
5 3�1�2

1

c�

2
4

�s 0 c 
c� c 0 c� s 
s� s c� �s� c 

3
5

3�2�3
1

s�

2
4

�c s 0

s� s s� c 0

c� c �c� s s�

3
5 3�2�1

1

c�

2
4
0 s c 
0 c� c �c� s 

c� s� s s� c 

3
5

Table 9.4 The matrix B�1.�;  /

Axes Symmetric sets Axes Asymmetric sets

1�2�1

2
4

c� 0 1

s� s c 0

s� c �s 0

3
5 1�2�3

2
4

c� c s 0

�c� s c 0

s� 0 1

3
5

1�3�1

2
4

c� 0 1

�s� c s 0

s� s c 0

3
5 1�3�2

2
4

c� c �s 0

�s� 0 1

c� s c 0

3
5

2�1�2

2
4

s� s c 0

c� 0 1

�s� c s 0

3
5 2�1�3

2
4

c� s c 0

c� c �s 0

�s� 0 1

3
5

2�3�2

2
4

s� c �s 0

c� 0 1

s� s c 0

3
5 2�3�1

2
4

s� 0 1

c� c s 0

�c� s c 0

3
5

3�1�3

2
4

s� s c 0

s� c �s 0

c� 0 1

3
5 3�1�2

2
4

�c� s c 0

s� 0 1

c� c s 0

3
5

3�2�3

2
4

�s� c s 0

s� s c 0

c� 0 1

3
5 3�2�1

2
4

�s� 0 1

c� s c 0

c� c �s 0

3
5
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Table 9.5 Euler angle to quaternion conversions

Axes Quaternion Axes Quaternion

1�2�1

2
664

Nc� Ns.� C  /

Ns� Nc.� �  /

Ns� Ns.� �  /

Nc� Nc.� C  /

3
775 1�2�3

2
664

Ns� Nc� Nc C Nc� Ns� Ns 
Nc� Ns� Nc � Ns� Nc� Ns 
Nc� Nc� Ns C Ns� Ns� Nc 
Nc� Nc� Nc � Ns� Ns� Ns 

3
775

1�3�1

2
664

Nc� Ns.� C  /

Ns� Ns. � �/

Ns� Nc. � �/

Nc� Nc.� C  /

3
775 1�3�2

2
664

Ns� Nc� Nc � Nc� Ns� Ns 
Nc� Nc� Ns � Ns� Ns� Nc 
Nc� Ns� Nc C Ns� Nc� Ns 
Nc� Nc� Nc C Ns� Ns� Ns 

3
775

2�1�2

2
664

Ns� Nc. � �/

Nc� Ns.� C  /

Ns� Ns. � �/

Nc� Nc.� C  /

3
775 2�1�3

2
664

Nc� Ns� Nc C Ns� Nc� Ns 
Ns� Nc� Nc � Nc� Ns� Ns 
Nc� Nc� Ns � Ns� Ns� Nc 
Nc� Nc� Nc C Ns� Ns� Ns 

3
775

2�3�2

2
664

Ns� Ns.� �  /

Nc� Ns.� C  /

Ns� Nc.� �  /

Nc� Nc.� C  /

3
775 2�3�1

2
664

Nc� Nc� Ns C Ns� Ns� Nc 
Ns� Nc� Nc C Nc� Ns� Ns 
Nc� Ns� Nc � Ns� Nc� Ns 
Nc� Nc� Nc � Ns� Ns� Ns 

3
775

3�1�3

2
664

Ns� Nc.� �  /

Ns� Ns.� �  /

Nc� Ns.� C  /

Nc� Nc.� C  /

3
775 3�1�2

2
664

Nc� Ns� Nc � Ns� Nc� Ns 
Nc� Nc� Ns C Ns� Ns� Nc 
Nc� Ns� Ns C Ns� Nc� Nc 
Nc� Nc� Nc � Ns� Ns� Ns 

3
775

3�2�3

2
664

Ns� Ns. � �/

Ns� Nc. � �/

Nc� Ns.� C  /

Nc� Nc.� C  /

3
775 3�2�1

2
664

Nc� Nc� Ns � Ns� Ns� Nc 
Nc� Ns� Nc C Ns� Nc� Ns 
Ns� Nc� Nc � Nc� Ns� Ns 
Nc� Nc� Nc C Ns� Ns� Ns 

3
775

where Nc.�/ � cos.�=2/ and Ns.�/ � sin.�=2/



Chapter 10
Orbital Dynamics

The study of bodies in orbit has attracted the world’s greatest mathematicians in
the past, and remains a flourishing subject area in the present. In fact many useful
mathematical concepts, such as Bessel functions and nonlinear least squares, can
be directly traced back to the study of orbital motion. Here the basic equations
and concepts of orbital dynamics are introduced. More details can be found in the
references herein.

In the seventeenth century, Johannes Kepler propounded his three laws of
planetary motion defining the shape of planetary orbits, the velocity at which planets
travel around the Sun, and the time required for a planet to complete an orbit. They
state that

1. The orbit of each planet is an ellipse, with the Sun at a focus.
2. The line joining the planet to the Sun sweeps out equal areas in equal times.
3. The square of the period of a planet is proportional to the cube of its mean

distance from the Sun.

Since ellipses are a basic element in the study of orbital motion, we begin this
chapter with a review of the geometry of ellipses.

In this chapter all position, r, and velocity, v, vectors are expressed in inertial
coordinates, unless a different frame is explicitly indicated. Thus, the subscript I is
removed from these vectors for brevity.

10.1 Geometry of Ellipses

This section provides a review of elliptical geometry, which will later be used to
describe the motion of a spacecraft in orbit. Figure 10.1 shows a basic ellipse using a
two-center bipolar coordinate system, centered at .x0; y0/. The variable a is known
as the semimajor axis and the variable b is the semiminor axis. By definition the
two-center bipolar coordinate equation is given by

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__10,
© Springer Science+Business Media New York 2014
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Fig. 10.1 Two-center bipolar
ellipse coordinate system

r1 C r2 D 2a (10.1)

Assuming that x0 D y0 D 0, the first focus F1 is at .�c; 0/ and the second focus F2
is at .c; 0/. We wish to describe a point given by both r1 and r2 using the coordinates
x and y. It is easy to show that r1 D

p
.x C c/2 C y2 and r2 D

p
.x � c/2 C y2.

Substituting these quantities into Eq. (10.1) gives

p
x2 C y2 C c2 C 2cx C

p
x2 C y2 C c2 � 2cx D 2a (10.2)

Squaring both sides of Eq. (10.2) gives

2.x2 C y2 C c2/C 2
p
.x2 C y2 C c2/2 � 4c2x2 D 4a2 (10.3)

Rearranging terms and squaring again leads to

.x2 C y2 C c2/2 � 4c2x2 D Œ2a2 � .x2 C y2 C c2/�2

D 4a4 � 4a2.x2 C y2 C c2/C .x2 C y2 C c2/2
(10.4)

Grouping terms and dividing by 4a2.a2 � c2/ then leads to

x2

a2
C y2

a2 � c2 D 1 (10.5)

The points on the ellipse at x D 0 have y D ˙b, so r1 D r2 D
p
c2 C b2 D a at

these points. Substituting a2 � c2 D b2 into Eq. (10.5) gives the basic equation for
an ellipse:

x2

a2
C y2

b2
D 1 (10.6)
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Fig. 10.2 Focal definition of ellipse

Fig. 10.3 Relationships in focal definition of ellipse

Another way to describe an ellipse is to use the focal definition, which states
that an ellipse is the locus of points the ratio of whose distances from a fixed
line, the directrix, to a fixed point, the focus, is a constant e, called the eccentricity.
This definition is depicted in Fig. 10.2, where the vertical line through D1 is
the directrix associated with F1 and the vertical line through D2 is the directrix
associated with F2. The eccentricity is e D r1=g1 D r2=g2, where g1 and g2 are
the distances from the comparative directrices to the desired point on the ellipse.
Adding r1 D e g1 and r2 D e g2 gives

r1 C r2 D e.g1 C g2/ (10.7)

Comparing Eqs. (10.1) and (10.7) gives a D e g, where g is the distance shown in
Fig. 10.3.

Referring to Fig. 10.3 the following relationships can be seen:

rp D a � c D e gp (10.8a)

g D aC gp (10.8b)
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where rp is the radial distance to the periapsis, the orbital point closest to the focus,
and gp is the distance from the directrix to the periapsis. Also, ra D a C c is the
radial distance to the apoapsis, the orbital point farthest from the focus. For Earth-
orbiting space objects the closest and farthest points are called perigee and apogee,
respectively. Substituting Eq. (10.8b) into a D e g and using Eq. (10.8a) gives

a D ae C e gp D ae C a � c (10.9)

Solving Eq. (10.9) for e gives the well-known result:

e D c

a
(10.10)

Substituting c D pa2 � b2 into this yields

e D
r
1 � b

2

a2
(10.11)

which clearly shows that the eccentricity of a circle, for which a D b, is zero as
expected. Substituting Eq. (10.10) into g D a=e yields

g D a2

c
(10.12)

Another form for the eccentricity is given by

e D a � c
g � a D

p
b2 C c2
g

(10.13)

Substituting c D e a into rp D a � c and ra D aC c gives

rp D a.1 � e/ (10.14a)

ra D a.1C e/ (10.14b)

Equations (10.6) and (10.10) give y D b
p
1 � e2 when x D c. This distance is

known as the semilatus rectum, a combination of the Latin words “semi,” meaning
half, “latus,” meaning side, and “rectum,” meaning straight. It is shown as p in
Fig. 10.4, so we have

p D a.1 � e2/ (10.15)

It is often more convenient to represent an ellipse in polar coordinate form rather
than the Cartesian form of Eq. (10.6). Referring to Fig. 10.5 the x and y components
are related to the polar coordinates r and � by

x D c C r cos � (10.16a)

y D r sin � (10.16b)
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Fig. 10.4 Semilatus rectum
definition

Fig. 10.5 Polar coordinate
definition of an ellipse

where � is known as the true anomaly, which is defined as a positive rotation from
the periapsis direction. Substituting Eq. (10.16) into Eq. (10.6) and multiplying both
sides by b2 gives

.b2=a2/.c2 C 2 c r cos � C r2 cos2 �/C r2 sin2 � D b2 (10.17)

Substituting sin2 � D 1�cos2 �, using b2 D a2.1�e2/ from Eq. (10.11) and c D e a
from Eq. (10.10), and collecting terms leads to

0 D r2 � e2r2 cos2 � C 2a.1 � e2/ e r cos � � a2.1 � e2/2

D r2 � Œa.1 � e2/ � e r cos ��2 (10.18)

so r is given by

r D ˙Œa.1 � e2/ � e r cos �� (10.19)

The plus sign must be used because r is positive. This leads to

r D a.1 � e2/
1C e cos �

(10.20)

Using Eq. (10.15) expresses this in terms of the semilatus rectum

r D p

1C e cos �
(10.21)

Note that when e D 0 then r D p, which represents a circle.
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10.2 Keplerian Motion

Kepler’s three laws of motion, stated at the beginning of this chapter, can be proven
mathematically from Newton’s universal law of gravitation. Newton stated that any
two bodies with mass M and m attract each other by force that acts along the line
r joining them with magnitude directly proportional to the product of their masses
and inversely proportional to the square of the distance r D krk between them.
Mathematically, this statement is given by

Fg D �GMm
r
r3

(10.22)

where G is the universal gravitation constant [3, 4].
Consider the two bodies in Fig. 10.6, where Rc denotes the vector to the center

of mass. Applying Newton’s law for each body we obtain

M RRM D � GMm

kRM � Rmk3 .RM � Rm/ (10.23a)

m RRm D � GMm

kRM � Rmk3 .Rm � RM/ (10.23b)

Adding Eqs. (10.23a) and (10.23b) gives

M RRM Cm RRm D 0 (10.24)

The center of mass is given by

Rc D MRM CmRm

M Cm (10.25)

so Eq. (10.24) gives RRc D 0 at all time. This states that the center of mass moves in
a straight line at constant velocity. We are also interested in determining the relative
position, r D Rm � RM , of the smaller mass (e.g. a satellite) with respect to the
large mass (e.g. the Earth). Subtracting Eq. (10.23a) from Eq. (10.23b) leads to

Rr D � �
r3

r (10.26)

Fig. 10.6 Relative motion of
two bodies
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where� D G.MCm/ is the gravitational parameter. The approximation� � GM
is obviously a good one for most orbiting bodies since M 
 m. Perturbations
due to conservative forces, such as the gravity differential force due to the Earth’s
oblateness, and non-conservative forces, such as drag and solar radiation pressure,
are often added to the right hand side of Eq. (10.26). These perturbations will be
discussed in Sect. 10.3.

Equation (10.26) can be used to show that the energy and angular momentum of
orbital motion are conserved. The specific kinetic energy, i.e. the kinetic energy per
unit mass, is given by

T � 1

2
v2 (10.27)

The time derivatives of T , using Eq. (10.26), is

PT D d

dt

� Pr � Pr
2

�
D Pr � Rr D ��Pr � r

r3
(10.28)

The specific potential energy is defined by

V � ��
r

(10.29)

The time derivative of V is

PV D �� d
dt
.r � r/�1=2 D �Pr � r

r3
(10.30)

Adding Eqs. (10.28) and (10.30) proves that the specific energy

E D T C V (10.31)

has time derivative zero, i.e. that it is conserved.
The specific angular momentum is given by

h � r � v D r � Pr (10.32)

Its time derivative is

Ph D Pr � PrC r � Rr D � �
r3

r � r D 0 (10.33)

showing that the angular momentum is conserved. Since r and v are both perpen-
dicular to the constant vector h, the position and velocity vectors must remain in a
fixed plane, called the orbital plane, perpendicular to h.

We now use Eq. (10.26) to prove Kepler’s three laws. Figure 10.7 depicts the area
swept out by a line joining the primary mass and its satellite. This area is half the
area of a parallelogram formed by r and dr:
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Fig. 10.7 Area sweep of
primary mass and satellite

dA D 1

2
kr � drk D 1

2
kr � dr

dt
dtk

D 1

2
kr � Prkdt D 1

2
h dt

(10.34)

Since h is constant then Eq. (10.34) indicates that the line sweeps out equal areas in
equal times, which proves Kepler’s second law.

Since h is constant, then

d

dt
.Pr�h/ D Rr�h D � �

r3
r�h D � �

r3
r� .r� Pr/ D � �

r3

�
.r � Pr/r � r2 Pr� (10.35)

where Eq. (8.2e), the “bac�cab” rule, has been used. Combining this with
Eq. (10.30) gives

d

dt


Pr � h � �

r
r
�
D 0 (10.36)

Integrating this equation gives

Pr � h � �
r

r D � e (10.37)

where the integration constant � e is commonly referred to as the Laplace vector.
Clearly Pr � h is in the orbit plane, so e must also be in this plane. Forming the dot
product of (10.37) with r gives

� r � e D r � .Pr � h/ � �r D .r � Pr/ � h � �r D h2 � �r (10.38)

where we have used Eq. (2.56a). Let  be the angle between r and e, so that
Eq. (10.38) becomes h2 D � r C � r e cos , or

r D h2=�

1C e cos 
(10.39)

This is just Eq. (10.21) for an ellipse in polar coordinates, where h2=� is the
semilatus rectum,  � � is the true anomaly shown in Fig. 10.5, and e is the
eccentricity, proving Kepler’s first law. It also requires the vector e, which is known
as the eccentricity vector, to point along the periapsis direction because � is the
angle between r and e. The magnitude of the eccentricity vector is the eccentricity
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of the elliptical orbit, so e is not a unit vector as its symbol might mislead one into
thinking. The equation p � h2=� gives the following useful expression for h:

h D p�p (10.40)

Note that Eq. (10.39) is actually more general than just for ellipses. It is a polar
equation of a conic section, where the value of e dictates the type of orbit. If e D 0
then the orbit is circular with a D r ; if e < 1 then the orbit is elliptical with a > 0;
if e D 1 then the orbit is parabolic with infinite semimajor axis; and if e > 1 then
the orbit is hyperbolic with a < 0. Elliptic orbits are the most common type because
they are used for planets and planetary satellites. Parabolic orbits are rarely found,
but orbits of some comets approximate a parabola. These orbits are a borderline case
between an open and closed orbit. The orbit of an interplanetary probe sent from the
Earth must be a hyperbolic orbit if the probe is to escape the Earth’s gravitational
field with finite speed. Parabolic and hyperbolic orbits are one-way trips to infinity
that will never retrace the same path again.

Equation (10.34) can be written as dt D .2=h/ dA. Integrating this equation
over an entire orbit and noting that the area of an ellipse is given by  a b yields

� D 2ab

h
(10.41)

where � is the orbital period. Substituting Eq. (10.40) and b D pap, which follows
from Eqs. (10.11) and (10.15), yields

� D 2p
�
a3=2 D 2

n
(10.42)

where n is the mean motion, defined by

n �
r
�

a3
(10.43)

This proves Kepler’s third law. For a circular 300 km low-Earth orbit, Eq. (10.42)
gives a period of about 90 min. A geosynchronous orbit with a period of one sidereal
day (approximately 23 h 56 min and 4 s), matching the Earth’s sidereal rotation
period, requires an altitude of 35,786 km. Communications satellites are often
placed in geostationary orbits, equatorial circular geosynchronous orbits, because
they appear to be stationary with respect to the ground.

Having proven Kepler’s three laws from Newton’s gravitational law, we now
investigate energy further. Since energy is conserved, it can be computed at any
convenient point in the orbit. Here, we choose the periapsis point with vp D h=rp .
Using Eqs. (10.14a), (10.40), and (10.15) gives

E D h2

2r2p
� �

rp
D �a.1 � e2/
2a2.1 � e/2 �

�

a.1 � e/ D
�a.1C e/ � 2a�

2a2.1 � e/ D � �
2a

(10.44)
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Substituting this expression into Eq. (10.31), substituting the definitions of T and
V , and rearranging gives

v2 D �
�
2

r
� 1
a

�
(10.45)

Equation (10.45) is known as the vis viva equation from the Latin for living force.
The escape velocity at a distance r from a center of force is the minimum velocity
needed to escape its gravitational pull. This is the velocity needed to achieve a
parabolic orbit, and is obtained by setting a D1 in Eq. (10.45):

vesc D
r
2�

r
(10.46)

The escape velocity for a body on the Earth’s surface, with r being the radius of the
Earth, is 11.06 km/s. The escape velocity for a body on the Moon’s surface, with
r and � being the radius and gravitational parameter of the Moon, respectively, is
1.68 km/s, which is almost 10 times less than for the Earth.

10.2.1 Classical Orbital Elements

Equation (10.26) requires the initial position, r.t0/, and velocity, Pr.t0/, with respect
to some inertial coordinate system. Unfortunately r.t0/ and Pr.t0/ do not provide the
most convenient characterization of the orbit. The six classical Keplerian orbital
elements give a more satisfying physical characterization of the orbit than the
Cartesian position and velocity vectors. The dimensional elements are given by

• a D semimajor axis (size of the orbit)
• e D eccentricity (shape of the orbit)
• M0 D initial mean anomaly (related to the spacecraft’s initial position in the

orbit)

The orientation elements are given by

• i D inclination (angle between orbit plane and reference plane)
• ˝ D right ascension of the ascending node (angle between vernal equinox

direction and the line of nodes)
• ! D argument of periapsis or perigee (angle between the ascending node

direction and periapsis or perigee direction)

Figure 10.8 shows the orientation elements and the unit vectors that define the
perifocal coordinate system. The vector ie points along the periapsis direction, the
vector ip points along the semilatus rectum direction, and the vector ih points along
the momentum direction, which is the orbit normal. Note that the perifocal system
is specific to a particular orbit, and that ie and ip are in the orbital plane. The line
of nodes vector is given by the intersection of the reference plane (e.g. the Earth’s
equatorial plane) and the orbital plane.
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Reference
Plane

Orbital
Plane

Periapsis

Line of Nodes

Fig. 10.8 Coordinate system geometry and orbital elements

The transformation from GCI to perifocal coordinates is given by

ie D A11i1 C A12i2 C A13i3 (10.47a)

ip D A21i1 C A22i2 C A23i3; (10.47b)

ih D A31i1 C A32i2 C A33i3 (10.47c)

where Aij are elements of a rotation matrix. The transformation is accomplished
using a 3�1�3 Euler rotation, with rotation matrix elements given by

A11 D cos˝ cos! � sin˝ sin! cos i (10.48a)

A12 D sin˝ cos! C cos˝ sin! cos i (10.48b)

A13 D sin! sin i (10.48c)

A21 D � cos˝ sin! � sin˝ cos! cos i (10.48d)

A22 D � sin˝ sin! C cos˝ cos! cos i (10.48e)

A23 D cos! sin i (10.48f)

A31 D sin˝ sin i (10.48g)

A32 D � cos˝ sin i (10.48h)

A33 D cos i (10.48i)

The inverse relationships are given in Sect. 10.2.3.
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10.2.2 Kepler’s Equation

We wish to determine the location of an object in orbit at any instant of time, which
means finding the true anomaly as a function of time. Kepler’s second law states
that equal times give equal areas, so the true anomaly will be a linear function of
time only in a circular orbit. Referring back to Fig. 10.5, the position and velocity
vectors are given by

r D r cos � ie C r sin � ip (10.49a)

Pr D . Pr cos � � r P� sin �/ie C . Pr sin � C r P� cos �/ip (10.49b)

Performing the cross product h D r � Pr and noting that ie � ip D ih yields

h D Œr cos �. Pr sin � C r P� cos �/ � r sin �. Pr cos � � r P� sin �/� ih D r2 P� ih
(10.50)

Thus h D r2 P�, which shows that r2 P� must be a constant. This equation can be
written as

hdt D r2 d� (10.51)

Substituting Eqs. (10.39) and (10.40) into Eq. (10.51) gives
r
�

p3
dt D d�

.1C e cos �/2
(10.52)

This equation needs to be integrated to determine the true anomaly difference to go
from some initial time t0 to another time t1:

r
�

p3
.t1 � t0/ D

Z �1

�0

d�

.1C e cos �/2
(10.53)

The right hand side of Eq. (10.53) involves finding a solution to a nonstandard
elliptic integral. Unfortunately, no closed-form solution exists. Kepler essentially
performed a change of variables to convert the integral equation to an algebraic
equation.

Kepler projected the object’s position vertically onto a circle circumscribed
around the ellipse, as shown in Fig. 10.9. Note that the origin in this figure is at
the focus, rather than at the center of the ellipse, as had been assumed in Sect. 10.1.
The remainder of this chapter will assume that the origin is at the focus. The angle
E is known as the eccentric anomaly. It is clear from the figure that

x D a cosE � c D a.cosE � e/ (10.54)

Then

a cosE D c C x D ae C a.1 � e2/
1C e cos �

cos � D a.e C cos �/

1C e cos �
(10.55)
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Fig. 10.9 Kepler’s geometry

Solving this equation for cos � gives

cos � D cosE � e
1 � e cosE

(10.56)

and then substituting this into r D x= cos � gives

r D a.1 � e cosE/ (10.57)

It follows from Eq. (10.56) that

sin2 � D 1 � cos2 � D .1 � e cosE/2 � .cosE � e/2
.1 � e cosE/2

D .1 � e2/ sin2 E

.1 � e cosE/2
(10.58)

Figure 10.9 also shows that sin � has the same sign as sinE, so

sin � D
p
1 � e2 sinE

1 � e cosE
(10.59)

Combining Eqs. (10.57) and (10.59) gives

y D r sin � D a
p
1 � e2 sinE (10.60)

We now use Eqs. (10.54), (10.57), and (10.60) to find a relationship between
the eccentric anomaly and true anomaly. Trigonometric half-angle identities for any
angle � give

tan
�

2
D sin.�=2/

cos.�=2/
D 2 sin.�=2/ cos.�=2/

2 cos2.�=2/
D sin �

1C cos �
(10.61)
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Thus, we find from Eqs. (10.56) and (10.59) that

tan
�

2
D

p
1 � e2 sinE

.1 � e cosE/C .cosE � e/ D
r
1C e
1 � e

sinE

1C cosE
(10.62)

and using Eq. (10.61) on the right side gives the desired result

tan
�

2
D
r
1C e
1 � e tan

E

2
(10.63)

Equation (10.63) allows us to compute � given e and E, but we still need to find the
time dependence of E.

A computation similar to Eq. (10.50) gives

h D r � Pr D .x ie C y ip/ � . Px ie C Py ip/ D .x Py � y Px/ih (10.64)

Thus h D x Py � y Px. Substituting Eqs. (10.54) and (10.60), along with their time
derivatives, into h leads to

h D a2.cosE � e/
p
1 � e2 cosE

dE

dt
C a2
p
1 � e2 sin2 E

dE

dt

D a2
p
1 � e2.1 � e cosE/

dE

dt

(10.65)

Substituting h D p�p Dp�a.1 � e2/ into this gives

r
�

a3
D n D .1 � e cosE/

dE

dt
D d

dt
.E � e sinE/ (10.66)

where n is the mean motion, defined by Eq. (10.43). Integrating both sides of
Eq. (10.66) easily leads to

n.t1 � t0/ D .E � e sinE/jE1E0 (10.67)

Note that if we set E0 D 0 and E1 D 2 , then we get Kepler’s third law! The mean
anomaly at a general time t is given by

M.t/ DM0 C n.t � t0/ (10.68)

where M0 D E0 � e sinE0 is mean anomaly at time t0. Then Eq. (10.67) can
written as

M.t/ D E.t/ � e sinE.t/ (10.69)
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which is known as Kepler’s equation. Given M0 and some time past t0, our goal is
to determine E.t/ using Eqs. (10.68) and (10.69). Unfortunately, Kepler’s equation
has no closed-form solution. Kepler’s equations has intrigued mathematicians for
centuries and spawned a multitude of mathematical techniques [7]. Kepler’s equa-
tion is well suited for Newton-Raphson’s iteration. Define the following function:

f .E/ �M � .E � e sinE/ (10.70)

which is zero if the correct E is found. A series expansion of Eq. (10.69) gives
the following approximation for E, which is accurate up to third-order in the
eccentricity [4]:

E DM C e sinM

1 � e cosM
� 1
2

�
e sinM

1 � e cosM

�3
C � � � (10.71)

Begin Newton’s iteration by starting with some initial guess of E, denoted by OE,
which can be given by M for small e or by Eq. (10.71). Then compute the Newton
correction

�E D � f .
OE/

f 0. OE/ D
M � . OE � e sin OE/

1 � e cos OE (10.72)

Next update the current estimate using

OE  OE C�E (10.73)

where denotes replacement. Continue iterating until �E is below some prede-
fined threshold.

10.2.3 Orbit Propagation

The classical solution is the following: given the classical orbital elements at an
epoch time t0, compute the position and velocity vectors at any time t . The classical
solution involvingE is summarized in Table 10.1. Note that the position in perifocal
coordinates is given by Œx; y; 0�. Therefore, only the elements A11, A21, A12, A22,
A13, and A23 from Eq. (10.48) are needed to convert from perifocal coordinates to
GCI coordinates, since

r D
2
4
A11 A12 A13
A21 A22 A23
A31 A32 A33

3
5
T 2
4
x

y

0

3
5 (10.74a)

Pr D
2
4
A11 A12 A13
A21 A22 A23
A31 A32 A33

3
5
T 2
4
Px
Py
0

3
5 (10.74b)
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Table 10.1 Classical orbital solution

fa; e; i; ˝; !; M0; .t � t0/g ) fr.t/; Pr.t/g
Mean Anomaly n D p

�=a3

M D M0 C n.t � t0/

Kepler’s Equation M D E � e sinE

Solve for E

Compute r r D a.1� e cosE/

Compute x; y x D a.cosE � e/

y D a
p
1� e2 sinE

Compute Px; Py Px D �.na2=r/ sinE

Py D .na2=r/
p
1� e2 cosE

Position r D
2
4
A11 A21
A12 A22
A13 A23

3
5
�
x

y

�

Velocity Pr D
2
4
A11 A21
A12 A22
A13 A23

3
5
" Px

Py

#

Note that these rotation matrix elements are time-invariant, which means that they
only need to be computed once and then stored. First, the mean motion, n, and
mean anomaly,M , are computed. Then, Kepler’s equation is solved forE. Next, the
variables x, y, Px, Py, and r are computed. Finally, the position and velocity vectors
at time t are determined.

Another form of the classical solution is possible by substituting x D r cos � and
y D r sin � into Eq. (10.74a), which gives

r D r
2
4

cos˝ cos � � sin˝ sin � cos i
sin˝ cos � C cos˝ sin � cos i

sin � sin i

3
5 (10.75)

where � D ! C �. The time derivative of Eq. (10.75) can be shown to be

Pr D �
r
�

p

2
4
.sin � C e sin!/ cos˝ C .cos � C e cos!/ sin˝ cos i
.sin � C e sin!/ sin˝ � .cos � C e cos!/ cos˝ cos i

�.cos � C e cos!/ sin i

3
5 (10.76)

For this solution once E has been determined using Kepler’s equation, then � is
determined using Eq. (10.63). The parameters r can be given by either Eq. (10.21)
or Eq. (10.57). Also, the constant p is computed using Eq. (10.15).
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The inverse problem involves determining the orbital elements from the space-
craft position r.t/ and velocity v.t/ vectors at some time t . First, the following
quantities are computed:

r D kr.t/k; v D kv.t/k (10.77a)

h D r.t/ � v.t/; h D khk (10.77b)

1

a
D 2

r
� v

2

�
(10.77c)

e D v.t/ � h
�

� r.t/
r
; e D kek (10.77d)

Equation (10.77c), derived directly from the vis viva equation, is used to deter-
mine a. The perifocal coordinates vectors can now be computed, so that

ih D h=h D A31i1 C A32i2 C A33i3 (10.78a)

ie D e=e D A11i1 C A12i2 C A13i3 (10.78b)

ip D ih � ie D A21i1 C A22i2 C A23i3 (10.78c)

which can be used to extract any desired Aij . The inclination, i , right ascension of
the ascending node, ˝, argument of periapsis, !, are computed by

i D cos�1 A33; 0 � i <  (10.79a)

˝ D atan2.A31;�A32/; 0 � ˝ < 2 (10.79b)

! D atan2.A13; A23/; 0 � ! < 2 (10.79c)

Referring to Table 10.1 and Eq. (10.57), we see that

r.t/ � v.t/ D x Px C y Py D .na3=r/Œ�.cosE � e/ sinE C .1 � e2/ sinE cosE�

D .na3=r/e.1 � e cosE/ sinE D na2e sinE.t/ (10.80)

where many time arguments of E.t/ have been omitted to save space. Solving
Eq. (10.57) for e cosE.t/ gives

e cosE.t/ D 1 � r
a

(10.81)

Equations (10.80) and (10.81) then give the eccentric anomaly at time t as

E.t/ D atan2

�
r.t/ � v.t/
na2

; 1 � r
a

�
; 0 � E.t/ < 2 (10.82)
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The mean anomaly at time t is determined by Kepler’s equation

M.t/ D E.t/ � e sinE.t/ (10.83)

and the mean anomaly at the epoch time t0 is given by

M0 DM.t/ � n.t � t0/ (10.84)

Note that the Kepler elements a, e, i ,˝, !, andM0 are independent of the time t at
which r.t/ and v.t/ are determined. Note also that quadrants are important, which
is why the atan2 function is used in Eqs. (10.78) and (10.82).

10.3 Disturbing Forces1

A spacecraft is affected by many disturbing accelerations, or perturbations. Four
important disturbance sources are gravity due to a non-spherical Earth,2 denoted
by agrav; forces due to bodies other than the central body, denoted by athird;
aerodynamic drag, denoted by aaero; and solar radiation pressure (SRP), denoted
by aSRP. The modification of Eq. (10.26) include these disturbances is

Rr D � �
r3

rC aperturb D � �
r3

rC agrav C athird C aaero C aSRP (10.85)

Note that gravity and third-body disturbances are conservative, meaning that they
can be computed as gradients of potential functions, while drag and SRP are not.

The most straightforward way to compute perturbed orbital motion is to integrate
Eq. (10.85) numerically. This is known as the method of special perturbations, and
can be the most accurate method, but also the most computationally expensive.
The method of general perturbations, which is actually less general, was developed
to speed the computation [10]. We provide a brief discussion of general perturbation
theory in Sect. 10.4.1.

10.3.1 Non-Spherical Gravity

The Earth is not a perfect sphere, and mass is distributed nonuniformly throughout
the Earth. Since gravity depends directly on mass, the gravity field will reflect this
nonuniformity. The most common approach to model non-spherical gravity uses a

1The authors would like to thank Christopher K. Nebelecky for the contributions in this section.
2The generalization to any other central body is straightforward; we choose the Earth for
specificity.
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spherical harmonic expansion, which we will now develop. We consider a body such
as the Earth to be built up of a large number, N , of points with mass mi located at
points ri These give rise to a gravitational potential at a point r of

U.r/ D
NX
iD1

Gmi

kr � rik (10.86)

where G is Newton’s universal gravitational constant. In the Earth-Centered/Earth-
Fixed (ECEF) frame

r D r
2
4

cos	0 cos�
cos	0 sin�

sin	0

3
5 and ri D ri

2
4

cos	0
i cos�i

cos	0
i sin�i

sin	0
i

3
5 (10.87)

where 	0 is the geocentric latitude3 and � is the longitude, so

kr � rik�1 D .r2 C r2i � 2r � ri /�1=2

D 1

r



1C

ri
r

�2 � 2ri
r

�
cos	0 cos	0

i cos.� � �i /C sin	0 sin	0
i

���1=2

(10.88)

We separate the dependence on r from that on ri by means of the identity [2]



1C

ri
r

�2 � 2ri
r

�
cos	0 cos	0

i cos.� � �i /C sin	0 sin	0
i

���1=2

D
1X
nD0

ri
r

�n nX
mD0

.2 � ı0m/ .n �m/Š
.nCm/ŠP

m
n .sin	0/Pm

n .sin	0
i / cos .m.� � �i //

(10.89)

where ı0m is the Kronecker delta and Pm
n , the associated Legendre function of

degree n and order m, is defined in terms of the Legendre polynomials4

Pn.x/ D 1

2nnŠ

dn

dxn
.x2 � 1/n (10.90)

by5

Pm
n .x/ D .1 � x2/m=2

dm

dxm
Pn.x/ (10.91)

3We use 	0 for latitude to avoid confusion with the geodetic latitude of Sect. 2.6.3.
4Equation (10.90) is the well-known Rodrigues equation for the Legendre polynomials.
5We follow Vallado’s notation [21]. Montenbruck and Gill [14] and Abramowitz and Stegun [1]
denote these functions by Pnm and define Pm

n D .�1/mPnm.
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The associated Legendre functions for degrees 0 to 4 are [21]

P 0
0 .sin	0/ D 1 P 2

3 .sin	0/ D 15 cos2 	0 sin	0

P 0
1 .sin	0/ D sin	0 P 3

3 .sin	0/ D 15 cos3 	0

P 1
1 .sin	0/ D cos	0 P 0

4 .sin	0/ D 1

8
.35 sin4 	0 � 30 sin2 	0 C 3/

P 0
2 .sin	0/ D 1

2
.3 sin2 	0 � 1/ P 1

4 .sin	0/ D 5

2
cos	0.7 sin3 	0 � 3 sin	0/

P 1
2 .sin	0/ D 3 sin	0 cos	0 P 2

4 .sin	0/ D 15

2
cos2 	0.7 sin2 	0 � 1/

P 2
2 .sin	0/ D 3 cos2 	0 P 3

4 .sin	0/ D 105 cos3 	0 sin	0

P 0
3 .sin	0/ D 1

2
.5 sin3 	0 � 3 sin	0/ P 4

4 .sin	0/ D 105 cos4 	0

P 1
3 .sin	0/ D 3

2
cos	0.5 sin2 	0 � 1/ (10.92)

Equations (10.90) and (10.91) are not useful for computation. The customary
procedure is to compute P 0

0 , P 0
1 , and P 1

1 from their explicit expressions and then to
find the associated Legendre functions of higher degree recursively by

P 0
n .sin	0/ D 1

n

�
.2n � 1/ sin	0P 0

n�1.sin	0/ � .n � 1/P 0
n�2.sin	0/

�
(10.93a)

Pm
n .sin	0/ D sin	0Pm

n�1.sin	0/C .nCm � 1/ cos	0 Pm�1
n�1 .sin	0/;

for 0 < m < n (10.93b)

Pn
n .sin	0/ D .2n � 1/ cos	0 Pn�1

n�1 .sin	0/ (10.93c)

or some equivalent recursion relations.
Putting Eqs. (10.86), (10.88), and (10.89) together, and noting that P 0

0 .x/ D 1,
gives the spherical harmonics expansion for the gravity potential

U.r/ D �

r

(
1C

1X
nD1

�
R

r

�n nX
mD0

Pm
n .sin	0/ŒCm

n cos.m�/C Smn sin.m�/�

)

(10.94)

where � � GM , with M DPN
iD1 mi being the total mass of all the particles in the

central body and, for n � 1 and 0 � m � n,

Cm
n D

2 � ı0m
M

.n �m/Š

.nCm/Š
NX
iD1

mi

 ri
R

�n
Pm
n .sin	0

i / cos.m�i / (10.95a)

Smn D
2 � ı0m
M

.n �m/Š

.nCm/Š
NX
iD1

mi

 ri
R

�n
Pm
n .sin	0

i / sin.m�i / (10.95b)
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Fig. 10.10 Types of spherical harmonics. (a) Zonal. (b) Tesseral. (c) Sectoral

The parameter R characterizes the size of the mass distribution; for Earth gravity
modeling, M D M˚ and R D R˚. Note that Eq. (10.95) is not used to compute
Cm
n and Smn ; they are found by fitting gravity measurement data, including tracking

of satellite orbits.
The spherical harmonics fall into three classes: zonal harmonics for m D 0,

tesseral harmonics for 0 < m < n, and sectoral harmonics for m D n. These are
illustrated in Fig. 10.10.

Note that Eq. (10.95) implies that S0n D 0, so there are only 2n C 1 nonzero
terms in the spherical harmonics expansion for any degree n. We can eliminate some
other coefficients by choosing our coordinate system wisely. Equations (10.95) and
(10.87) say that

2
4
C1
1

S11
C 0
1

3
5 D 1

MR

NX
iD1

miri (10.96)

Thus C0
1 , C1

1 , and S11 will all vanish by Eq. (3.55) if we place the origin of our
coordinate system at the central body’s center of mass, as is done for ECEF coor-
dinates. Furthermore, Eqs. (10.95), (10.87), and (3.69) say that C1

2 D �J13=MR2
and S12 D �J23=MR2, where J is the central body’s moment of inertia tensor. Thus
these coefficients also vanish if we choose the z axis of our coordinate frame to be a
principal axis of inertia of the central body.

The acceleration due to gravity is determined by taking the gradient of the
potential function in Eq. (10.94). The leading term �=r in the potential function
gives the first term on the right side of Eq. (10.85), so we denote the potential with
this term omitted by U 0. We also set the origin of the coordinate frame at the Earth’s
center of mass so that the n D 1 terms in Eq. (10.94) vanish by Eq. (10.96). The
geopotential U 0 is expressed in terms of radial distance, geocentric latitude, and
longitude, so we apply the chain rule to obtain acceleration due to the non-spherical
Earth as

agrav D rU 0.r/ D @U 0

@r
rr C @U 0

@	0 r	0 C @U 0

@�
r� (10.97)
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The partials of the geopotential are given by

@U 0

@r
D � �

r2

1X
nD2

�
R˚
r

�n
.nC 1/

nX
mD0

Pm
n .sin	0/.Smn sinm� C Cm

n cosm�/

(10.98a)

@U 0

@	0 D
�

r

1X
nD2

�
R˚
r

�n nX
mD0

ŒP mC1
n .sin	0/ � .m tan	0/Pm

n .sin	0/�

� .Smn sinm� C Cm
n cosm�/

(10.98b)

@U 0

@�
D �

r

1X
nD2

�
R˚
r

�n nX
mD0

mPm
n .sin	0/.Smn cosm� � Cm

n sinm�/ (10.98c)

The gradients of the radius, latitude, and longitude are given by

rr D r
r

(10.99a)

r	0 D 1p
x2 C y2


�z

r
r2
C rz

�
(10.99b)

r� D 1

x2 C y2 .x ry � y rx/ (10.99c)

where

rx D
2
4
1

0

0

3
5 ; ry D

2
4
0

1

0

3
5 ; rz D

2
4
0

0

1

3
5 (10.100)

The Cartesian coordinates of the acceleration are then given by

agravx D
 
1

r

@U 0

@r
� z

r2
p
x2 C y2

@U 0

@	0

!
x �

�
1

x2 C y2
@U 0

@�

�
y (10.101a)

agravy D
 
1

r

@U 0

@r
� z

r2
p
x2 C y2

@U 0

@	0

!
y C

�
1

x2 C y2
@U 0

@�

�
x (10.101b)

agravz
D
�
1

r

@U 0

@r

�
zC

p
x2 C y2
r2

@U 0

@	0 (10.101c)

As an example we consider a 6th-order spherical harmonic geopotential model
including only the zonal harmonics. Zonal harmonics are especially simple because
they are symmetrical about the polar axis, i.e. there is no dependence on the
longitude or on the Greenwich hour angle. A specific notation, Jn � �C0

n , is used
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Table 10.2 Zonal
coefficients

i Ji �10
2 1:08262668355 �3
3 �2:53265648533 �6
4 �1:61962159137 �6
5 �2:27296082869 �7
6 5:40681239107 �7

for these coefficients. Values for the zonal coefficients of the Earth can be found
in Table 10.2 [21]. By far the strongest perturbation due to the Earth’s shape arises
from J2, with J3 being more than 400 times smaller.

The perturbing acceleration is given by

agrav D
6X
iD2

aJi (10.102)

where the individual terms are [17]

aJ2 D �
3

2
J2

 �
r2

��R˚
r

�2
2
6664


1 � 5 � z

r

	2� x
r

1 � 5 � z
r

	2� y

r
3 � 5 � z

r

	2� z
r

3
7775 (10.103a)

aJ3 D �
1

2
J3

 �
r2

��R˚
r

�3
2
6664

5

7
�

z
r

	3 � 3 � z
r

	�
x
r

5

7
�

z
r

	3 � 3 � z
r

	�
y

r

3

10
�

z
r

	2 � 35
3

�
z
r

	4 � 1
�

3
7775 (10.103b)

aJ4 D �
5

8
J4

 �
r2

��R˚
r

�4
2
6664


3 � 42 � z

r

	2 C 63 � z
r

	4� x
r

3 � 42 � z
r

	2 C 63 � z
r

	4� y

r

�

15 � 70 � z

r

	2 C 63 � z
r

	4� z
r

3
7775 (10.103c)

aJ5 D �
1

8
J5

 �
r2

��R˚
r

�5
2
6664

3

35
�

z
r

	 � 210 � z
r

	3 C 231 � z
r

	5� x
r

3

35
�

z
r

	 � 210 � z
r

	3 C 231 � z
r

	5� y

r
15 � 315 � z

r

	2 C 945 � z
r
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r

	6�

3
7775

(10.103d)

aJ6 D
1

16
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 �
r2

��R˚
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�6
2
6664


35 � 945 � z
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	2 C 3465 � z
r

	4 � 3003 � z
r

	6� x
r

35 � 945 � z
r

	2 C 3465 � z
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	4 � 3003 � z
r

	6� y

r
2205

�
z
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	2 � 4851 � z
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	4 C 3003 � z
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�

z
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3
7775

(10.103e)
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The gravitational parameter � and mean equatorial Earth radius, R˚ are given by

� D 3:986004418 � 1014 m3

s2
(10.104a)

R˚ D 6:378 137 � 106 m (10.104b)

10.3.2 Third-Body Forces

The term third-body is usually applied to any body other than the two bodies
producing two-body Keplerian motion. Consider the motion of a body with mass
m2 at position r2 about a body with mass m1 at position r1, under the influence of
n � 2 other bodies with masses mi at positions ri

Rr1 D � Gm2

kr1 � r2k3 .r1 � r2/ �
NX
iD3

Gmi

kr1 � rik3 .r1 � ri / (10.105a)

Rr2 D � Gm1

kr1 � r2k3 .r2 � r1/ �
NX
iD3

Gmi

kr2 � rik3 .r2 � ri / (10.105b)

As in the two-body case, subtracting Eq. (10.105a) from Eq. (10.105b) gives, with
r � r2 � r1, r � krk, � � G.m1 Cm2/, and �i � Gmi for i � 3,

Rr D � �
r3

r �
NX
iD3

�i

�
r1 � ri C r
kr1 � ri C rk3 �

r1 � ri
kr1 � rik3

�
(10.106)

The terms in the sum can be treated as small perturbations if all the other bodies
are much farther away from m1 than is m2, i.e. if kr1 � rik � r for all i � 3.
That is why the gravitational force of the Sun can be treated as a perturbation when
analyzing the motion of a spacecraft about the Earth.

Let us now expand the first term in the parentheses of Eq. (10.106) in powers of
r=kr1 � rik and retain only the first-order term. With

kr1 � ri C rk�3 D �kr1 � rik2 C 2r � .r1 � ri /C r2
��3=2

� kr1 � rik�3
�
1 � 3r � .r1 � ri /=kr1 � rik2

�
(10.107)

this gives

Rr D � �
r3

r �
NX
iD3

�i
r � 3.ui � r/ui
kr1 � rik3 (10.108)
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where ui � .r1 � ri /=kr1 � rik. However, it is often better to use Eq. (10.106)
than this approximation. For instance, higher order terms in the expansion for the
perturbation of the Moon on a spacecraft in geosynchronous orbit are not negligible,
because r=kr1 � rik � 1=9 in that case.

10.3.3 Atmospheric Drag

For objects in low-Earth orbit, atmospheric drag represents a significant perturbing
force. The drag force that a spacecraft experiences is given by

Faero D �1
2
� CDSkvrelkvrel (10.109)

where � is the local atmospheric density, which is discussed in Sect. 11.2, CD is a
dimensionless drag coefficient, S is the spacecraft area projected along the direction
of motion, and vrel is the relative velocity of the spacecraft with respect to the
atmosphere. As discussed in Sect. 3.3.6.3, the relative velocity, vrel, is different from
the GCI velocity of the spacecraft because the atmosphere is not stationary in the
GCI frame. The equations accounting for atmospheric motion can be found in that
section.

The drag coefficient, CD , is a dimensionless parameter that quantifies how a
spacecraft interacts with the surrounding medium to retard its motion. The drag
coefficient is a function of the shape of the spacecraft, its orientation with respect
to vrel, its surface properties, and the composition of the atmosphere. Often,
drag coefficients are determined via experimental and/or finite element analysis.
Experiments are in their own right situation-dependent as they consider only a
single composition for the surrounding medium. Vallado [23] points out that the
drag coefficient for several common shapes can increase significantly simply by
changing the orbital altitude. This is because the composition of the atmosphere
changes with altitude and the surface materials of the spacecraft will, in general,
interact with the different compositions differently.

The projected area of a spherical spacecraft is unchanging, but S depends on
the spacecraft attitude for all other shapes. It is typical to model the geometry of
non-spherical spacecraft as a collection of N flat plates of area Si and outward
normal unit vector niB expressed in the spacecraft body-fixed coordinate system.
The inclination of the i th plate to the relative velocity is given by

cos �iaero D
�
AT niB

	T � vrel

kvrelk
�

(10.110)

whereA is the attitude matrix that rotates the GCI frame to the spacecraft body-fixed
frame. The drag force in this model is

Faero D �1
2
� CDkvrelkvrel

NX0

iD1
Si cos �iaero (10.111)
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where the prime on the sum indicates that only plates with cos �iaero > 0 are included
in the summation. Note that this algorithm does not account for potential self-
shielding that would exist on concave spacecraft.

It is typical to group the drag coefficient, projected frontal area, and mass into a
single term called the ballistic coefficient, B:

B D m

CDS
(10.112)

The ballistic coefficient describes the relative magnitude of the effect of drag to
inertial forces and gravity. A spacecraft with a low ballistic coefficient will be
more susceptible to effects caused by drag than a spacecraft with a high ballistic
coefficient. Most orbit determination algorithms can also refine an initial estimate
of the ballistic coefficient. Note that some texts define the ballistic coefficient as the
inverse of that in Eq. (10.112).

10.3.4 Solar Radiation Pressure

Solar radiation pressure (SRP) is another non-conservative force acting on space-
craft. It is dominated by drag for spacecraft in low-Earth orbit, but SRP will
generally outweigh drag in higher altitude orbits (� 800 km). Like drag, SRP can be
characterized using either a simple or high fidelity model depending upon the level
of accuracy needed as well as a priori knowledge of the spacecraft. The mechanism
by which SRP affects the orbit of a spacecraft is through momentum exchange
between the spacecraft and photons incident on the spacecraft. Because of this,
SRP is a fundamentally different perturbation from that of drag. Whereas drag acts
throughout the entire orbit, SRP only contributes as times when the spacecraft is not
in the shadow of the Earth or another body.

The simplest of SRP models assumes that the force on the spacecraft due to solar
radiation can be characterized as [21]

FSRP D �Pˇ cSRP S esatˇ (10.113)

where Pˇ is the pressure of solar radiation, S is the Sun-facing area of the
spacecraft, and esatˇ is a unit vector directed from the spacecraft to the center
of the Sun, expressed in inertial coordinates. Section 11.3 presents methods for
computing the Sun position, solar pressure, and conditions for shadowing. The
constant cSRP defines how the incident radiation interacts with the spacecraft.
A value of cSRP D 0:0 implies that the spacecraft is transparent, so not affected
by any incoming radiation. When cSRP D 2:0, the spacecraft acts like a mirror with
all incident radiation perfectly reflected directly back to the Sun. While cSRP can
vary for a single spacecraft depending on its attitude, for most practical problems a
value of cSRP between 1.0 and 2.0 is sufficient for preliminary simulations.
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More sophisticated methods can be used to obtain more accurate estimates
of SRP if detailed knowledge of the spacecraft is available. These methods
decompose the SRP into contributions due to specular reflection, diffuse reflection,
absorption, and emission. Suppose that spacecraft’s surface can be modeled as a
collection of N flat plates of area Si , outward normal niB in the body coordinate
frame, specular reflection coefficient Rispec, diffuse reflection coefficient Ridiff, and
absorption coefficient Riabs. The coefficients sum to unity; RispecCRidiffCRiabs D 1.
Diffuse reflection is assumed to be Lambertian, which means that the intensity of
the reflected light in any direction is proportional to the cosine of the angle between
the reflection direction and the normal.

The inclination of the i th plate to the spacecraft-to-Sun vector is given by

cos �iSRP D
�
niI
	T

esatˇ D
�
AT niB

	T
esatˇ (10.114)

whereA is the attitude matrix that rotates the GCI frame to the spacecraft body-fixed
frame. The force due to SRP can then be expressed as [21]

FSRP D �Pˇ
NX0

iD1
Si cos �iSRP

�
2

�
Ridiff

3
CRispec cos �iSRP

�
niI C .1 �Rispec/esatˇ

�

(10.115)

where the prime on the sum indicates that only plates with cos �iSRP > 0 are included
in the summation.

Equation (10.115) provides a good approximation for the SRP acting on a
spacecraft of basic geometry, but it has several limitations. First, it should be
mentioned that the Sun is not the only source of radiation, although it is by far
the largest for Earth-orbiting spacecraft. Reflected light from the Earth or the Moon,
called albedo, can be significant if very precise dynamical modeling is required; and
models incorporating this effect have been developed [5].

Secondly, the force due to thermal radiation emitted from the spacecraft has
been ignored. A spacecraft is usually in a long-term energy balance, so all the
absorbed radiation is emitted as thermal radiation, although not necessarily at the
same time or from the same surface as its absorption. A simple way to model
thermal radiation is to consider a portion of the absorbed radiation to be diffusely
reflected, by increasing Ridiff and decreasing Riabs. However, this assumes that the
energy is re-radiated from the same surface and at the same time as its absorption.
A more accurate computation requires knowledge of the absolute temperature Ti
and emissivity 
i (a dimensionless constant between 0 and 1) of each surface. Then
the thermal radiation flux from the surface is given by the Stefan-Boltzmann law

F i
thermal D 
i�T 4i (10.116)

where � D 5:67�10�8 Wm�2K�4 is the Stefan-Boltzmann constant. If the thermal
radiation from every surface is Lambertian, it gives rise to a net force

Fthermal D �2
3

NX
iD1

F i
thermalSin

i
I (10.117)
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The reason that thermal radiation is usually negligible is that it is emitted with
roughly equal flux in all directions, so that the net radiation force is generally small.
A careful treatment of thermal radiation has been used to explain the anomalous
acceleration of the Pioneer 10 and 11 spacecraft, though [18, 20]. This analysis had
to account for onboard nuclear energy sources on these spacecraft, which resulted
in more radiation energy being emitted than absorbed.

Finally, Eq. (10.115) does not explicitly account for potential self-shadowing of
concave spacecraft. If the configuration of the spacecraft is known a priori, self-
shadowing can be taken into account by replacing Si with the area of the flat plate
that is visible to the Sun after accounting for self-shadowing. Modeling the effects of
reflected radiation or thermal radiation from one surface striking another surface is
an additional complication. Another drawback to Eq. (10.115) is that it is only valid
for a collection of flat surfaces with uniquely defined outward normals. Most real
spacecraft have some curved surfaces, and accurately approximating these surfaces
by a collection of flat plates causes the size of the model to grow, increasing the
computational burden.

10.4 Perturbation Methods

Perturbation methods find solutions to complex problems by relating them to
solutions of simpler problems. In our case, the solution of Eq. (10.85) is close to
the solution of the Kepler problem with all but the first term on the right side absent.
We will only give a very brief discussion of one of these methods; much fuller
treatments can be found in many books [4, 8, 16, 22].

10.4.1 Variation of Parameters

In the variation of parameters (VOP) method, constant parameters that characterize
the unperturbed motion of a system are treated as slowly-varying parameters in
a representation of the perturbed motion. The six Kepler orbit elements are well
suited for the application of the VOP method to perturbed orbital motion. Consider
that we have a solution of Eq. (10.85) that gives a spacecraft’s position and velocity
as functions of time. Then at any particular time t , we can compute a set of six
Kepler elements using Eqs. (10.77)–(10.84). These are called osculating elements,
and the Keplerian orbit with these elements is the osculating orbit, after the Latin
word “osculum,” meaning kiss, because the osculating orbit is tangent to, or kisses,
the perturbed orbit at time t .

The osculating Keplerian elements a.t/, e.t/, i.t/, ˝.t/, !.t/, and M0.t/ that
represent the perturbed orbit are functions of time, and obey a set of nonlin-
ear coupled differential equations. These equations for the case of conservative
perturbations, i.e. those derivable from a potential function, were developed by
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Lagrange; and Gauss found the equivalent equations in terms of the perturbing
acceleration aperturb. Exact integration of these equations has no real advantage over
direct integration of Eq. (10.85), but they are very useful as a starting point for
approximations. Their widespread application to the dynamics of Earth-orbiting
spacecraft began with the work of Brouwer [6] and Kozai [12], who analyzed
the effect of the zonal gravity harmonics on the osculating elements. Hoots has
summarized the history of these developments [10].

The variations of the osculating elements can be separated into periodic terms
and secular terms. The orbit elements obtained after removing the periodic terms
(in some analytic model and to some degree of approximation) are called mean
elements. The mean elements are smoother functions of time than the osculating
elements, and they obey simpler differential equations. The basic idea of the
VOP method is to propagate the mean elements and then add the periodic terms
analytically. Care must be taken, because different analytic methods result in
somewhat different mean elements.

10.4.2 Two Line Elements

The U.S. Space Surveillance System has been tracking and maintaining a catalog
of man-made Earth-orbiting satellites since the dawn of the space age; by 2004
the catalog contained more than 10,000 objects [10]. The catalog is in the form
of North American Air Defense Command (NORAD) two line element (TLE)
sets, which provide the basic parameters to predict the position and velocity of
a spacecraft. Tables 10.3 and 10.4 describe the information in the TLE set.6 The
orbital elements in Line 2 are mean values obtained by removing periodic variations
in a particular way. Accurate orbit predictions are obtained only if the prediction
model computes these periodic variations in exactly the same way that they were
removed in computing the elements. Using any other prediction model, even one
that is theoretically more accurate, will produce inferior predictions. The model
currently used for this purpose is the simplified general perturbations model SGP4,
which includes low-order zonal gravity terms and an approximate aerodynamic drag
model [10, 22].

An example for a TLE from the Tropical Rainfall Measuring Mission (TRMM)
spacecraft is given by

TRMM
1 25063U 97074A 11130.2059828 .00013273 00000-0 18660-3 0 6592
2 25063 034.9640 081.2155 0001042 240.3761 119.6798 15.55777853 76795 4

The title line contains the spacecraft name. The other two lines are described in
Tables 10.3 and 10.4. Note that there is an assumed decimal point in the B� value,
so the value in the example is by 1:8660 � 10�4. The term B� is given by [21]

6The format is also described in http://en.wikipedia.org/wiki/Two-line_element_set.

http://en.wikipedia.org/wiki/Two-line_element_set
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Table 10.3 Line 1 TLE information

Field Columns Content Example

1 01�01 Line number 1
2 03�07 Satellite number 25063
3 08�08 Classification (U=Unclassified) U
4 10�11 International Designator (Last two digits of launch year) 97
5 12�14 International Designator (Launch number of the year) 074
6 15�17 International Designator (Piece of the launch) A
7 19�20 Epoch Year (Last two digits of year) 11
8 21�32 Epoch (Day of the year and fractional portion of the day) 130.20598286
9 34�43 First Time Derivative of the Mean Motion divided by two .00013273
10 45�52 Second Time Derivative of Mean Motion divided by six 00000�0
11 54�61 B� drag term (decimal point assumed) 18660�3
12 63�63 The number 0 (Originally “Ephemeris type”) 0
13 65�68 Element number 659
14 69�69 Checksum (Modulo 10) 2

Table 10.4 Line 2 TLE information

Field Columns Content Example

1 01�01 Line number 2
2 03�07 Satellite number 25063
3 09�16 Inclination (Deg) 34.9640
4 18�25 Right Ascension (Deg) 81.2155
5 27�33 Eccentricity (decimal point assumed) 0001042
6 35�42 Argument of Perigee (Deg) 240.3761
7 44�51 Mean Anomaly (Deg) 119.6798
8 53�63 Mean Motion (Revs per Day) 15.55777853
9 64�68 Revolution number at epoch (Revs) 76795
10 69�69 Checksum (Modulo 10) 4

B� D 1

2

CDS

m
�0R˚ (10.118)

where CD is the drag coefficient, S is the cross-sectional area, m is the mass, �0 is
the atmospheric density at perigee (assumed to be 2:461�10�5 kg/m2/ER), andR˚
is the Earth radius (ER), typically given by 6378.135 km. The ballistic coefficient,
B , defined by Eq. (10.112), is related to B� by

B D R˚�0
2B� (10.119)

Using R˚ D 6378:135 km the constant conversion is given by

B D 1

12:741621B�
kg

m2
(10.120)
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10.4.3 A Useful Approximation, Secular J2 Effects Only

We noted in Sect. 10.3.1 that the J2 zonal term gave by far the largest perturbation
due to non-spherical gravitational field of the Earth. In many cases, a simple
Keplerian propagation including only secular J2 perturbations is adequate for the
orbital accuracy required. This is the case, for example, when the output is used
for graphical visualization. In such instances, we can tolerate errors of order J2, but
want to avoid errors of order J2.t � t0/.

Analysis shows that the mean elements Na, Ne, and Ni are constant, and the other
mean elements have the following secular variation to first order in J2 [16]:

N!.t/ D N!.t0/C 3

2
J2

�
R˚
Na
�2
.1 � Ne2/�2

�
2 � 5

2
sin2 Ni

�
Nn.t � t0/ (10.121a)

N̋ .t/ D N̋ .t0/ � 3
2
J2

�
R˚
Na
�2
.1 � Ne2/�2 �cos Ni	 Nn.t � t0/ (10.121b)

NM0.t/ D NM0.t0/C 3

2
J2

�
R˚
Na
�2
.1 � Ne2/�3=2

�
1 � 3

2
sin2 Ni

�
Nn.t � t0/ (10.121c)

where the overbars indicate mean elements, and Nn D p
�= Na3. We can combine the

last of these equations with Eq. (10.68) to get

NM.t/ D NM0.t0/C On.t � t0/ (10.122)

where

On D Nn
"
1C 3

2
J2

�
R˚
Na
�2
.1 � Ne2/�3=2

�
1 � 3

2
sin2 Ni

�#
D
r
�

Oa3 (10.123)

with

Oa D Na
"
1 � J2

�
R˚
Na
�2
.1 � Ne2/�3=2

�
1 � 3

2
sin2 Ni

�#
(10.124)

If we can tolerate errors of order J2, we only need to add the first-order corrections
of Eqs. (10.121) and (10.122), and can otherwise propagate the orbit as if it were an
unperturbed orbit. It is unnecessary to compute the periodic corrections for many
orbit and attitude analyses, so we can treat the propagated mean elements as if they
were osculating elements. The initial values of the mean elements can be obtained
from a TLE set, or they can simply be postulated for a mission design study.

We often want to initialize an orbit propagation with position and velocity
vectors at some epoch time. In order to use the simple Keplerian propagator
incorporating secular J2 effects, we first convert the position and velocity to
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osculating orbital elements. In principle, we should then remove the periodic
variations to obtain mean elements. Since we are willing to tolerate errors of order
J2, however, this osculating-to-mean conversion is unnecessary for five of the six
Keplerian orbit elements. We must compute the mean value of the semimajor axis,
however, because Eq. (10.122) shows that an error of order J2 in the semimajor axis
will lead to an error of the same order of magnitude in the mean motion and thus to
propagation errors growing like J2 On.t�t0/, which we are not willing to tolerate [13].
The mean-to-osculating transformation of the semimajor axis is given by [16]

a.t/ D NaC J2R
2˚
Na

(� Na
r

�3�
1�3 sin2 Ni sin2. N!C�/��.1�Ne2/�3=2

�
1�3
2

sin2 Ni
�)

(10.125)

After propagating the orbit to times of interest, we apply the inverse, mean-to-
osculating, transformation of the semimajor axis. This is not strictly necessary,
because ignoring it leads to tolerable errors of order J2, but it ensures that the
output position and velocity agree with the input position and velocity at the epoch
time. Since we convert back to the osculating semimajor axis, we are free to use
the quantity Oa of Eq. (10.124) as our mean semimajor axis on the right side of
Eqs. (10.121a) and (10.121b), because that introduces differences only of order J 22 .
Combining Eqs. (10.124) and (10.125) and using Eq. (10.20) to express r.t/ in terms
of the mean elements and the true anomaly �.t/ gives

a.t/ D OaC
 
J2R

2˚
Oa

!
g.t/ (10.126)

where

g.t/ �
�
1C Ne cos �.t/

1 � Ne2
�3 �

1 � 3 sin2 Ni sin2. N!.t/C �.t//� (10.127)

We use the exact inverse of this equation

Oa D 1

2

�
a.t0/C

q
a2.t0/ � 4J2R2˚g.t0/

�
(10.128)

to initialize Oa at the epoch time, so that the output position and velocity agree with
the input to computer precision. Thus the steps in this orbit propagator are

• Convert r.t0/ and v.t0/ to osculating Keplerian orbit elements
• Use Eq. (10.128) to compute Oa
• Treat Oa and the other five osculating elements as mean elements
• Compute the mean motion On Dp�= Oa3
• Use Eqs. (10.121a), (10.121b), and (10.122) to propagate to time t
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• Use Eq. (10.126) to compute a.t/
• Convert the Keplerian orbit elements to r.t/ and v.t/

This orbit propagator was used in Goddard Space Flight Center’s Mission Planning
Graphics Tool (MPGT), and also to drive a wall display at the Smithsonian Air and
Space Museum.

10.4.4 Sun-Synchronous Orbits

The right ascension of the ascending node in a Sun-synchronous orbit increases at
a rate of 1 revolution per year, or 1:991 � 10�7 rad/s, so that the orbit plane has a

nearly fixed orientation relative to the Sun. Substituting PN̋ D 1:991�10�7 rad/s and
the numerical values for J2, �, andR˚ into Eq. (10.121b) shows that the inclination
of a Sun-synchronous orbit must obey the relationship

cos Ni D �0:09892 .1 � Ne2/2
� Na
R˚

�7=2
D �.1 � Ne2/2

 �

3:975 h

�7=3
(10.129)

where � is the orbit period. Because the cosine is negative, the inclination will be
greater than 95:68ı, which means that these are retrograde orbits.

Sun-synchronous orbits are labeled by the mean local time of the ascending
node, i.e. the mean local time at the sub-satellite point when the spacecraft crosses
the equator from South to North. These orbits have many useful applications,
particularly for observing the Earth’s surface, because the lighting conditions at any
latitude change only seasonally, so very slowly from orbit to orbit. The inclination
of circular Sun-synchronous orbits varies from 95:68ı for a D R˚ to 99:48ı for
a D R˚ C 1;000 km, and these high-inclination orbits are well-suited to observing
high-latitude regions of the Earth.

The A Train, or Afternoon Train, of Earth-observation satellites provides a
good example of the use of such orbits. The spacecraft in this constellation are
in 1:30 p.m. Sun-synchronous orbits with i D 98:14ı and a D 7;078 km.7 They
are spaced a few minutes apart from each other so their collective observations may
be used to build high-definition three-dimensional images of the Earth’s atmosphere
and surface. There are currently five active satellites in the A Train: the Global
Change Observing Mission (GCOM-W1, also known as SHIZUKU), the lead
spacecraft in the constellation, launched by JAXA on May 18, 2012: Aqua, 4 min
behind GCOM-W1, launched by NASA on May 4, 2002; CloudSat, a cooperative
effort between NASA and the Canadian Space Agency, 2 min and 30 s behind Aqua;
the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
spacecraft, a joint effort of CNES and NASA, launched with Cloudsat on April 28,

7The lack of precise agreement with Eq. (10.129) is due to higher-order zonal perturbations.
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2006 and following it by no more than 15 s; and Aura, a multi-national satellite,
15 min behind Aqua but crossing the equator 8 min behind it due to a different
ascending node, launched by NASA on July 15, 2004.

Several solar observing scientific spacecraft have employed dawn/dusk Sun-
synchronous orbits, with ascending nodes at 6 a.m. or 6 p.m., to afford a nearly
continuous view of the Sun. The near-absence of eclipses in dawn/dusk orbits is
also useful for providing photoelectric power and for minimizing thermal transients
on sensitive scientific instruments that occur at eclipse entry and exit. The eclipse
analysis of Sect. 11.3 of Chap. 11 shows that eclipses cannot be completely avoided
unless aj sin."C i/j > R˚, where " D 23:44ı is the obliquity of the ecliptic. This
condition is satisfied only if a is between 1:218R˚ and 1:522R˚. A spacecraft in
a lower or higher 6 a.m. orbit will suffer eclipses around the northernmost point of
its orbit for several weeks near the winter solstice, and a spacecraft in a 6 p.m.
orbit outside this altitude range will be eclipsed near the southernmost point of
its orbit around the time of the summer solstice. The Canadian RADARSAT-2
spacecraft, launched on December 14, 2007, is an example of a 6 p.m. Sun-
synchronous orbit. Its altitude is 798 km, so it has an 11-week eclipse period around
the summer solstice, with the longest eclipse duration being 18 min [15].

10.5 Lagrange Points

After Newton solved the equations of motion of two bodies under their gravitational
attraction, the famous two-body problem, attention turned to the three-body prob-
lem. This led to a great deal of deep mathematics that is beyond the scope of this
book [4, 8, 16]. We will only consider the circular restricted three-body problem
(CR3BP). Restricted means that the mass of the third body (generally a spacecraft
or an asteroid) is so small compared to the masses of the other two bodies (usually
the Sun and the Earth,8 the Earth and the Moon, or the Sun and Jupiter) that ignoring
its influence on their motion is an excellent approximation. Circular means that the
two other bodies, called the primaries, move in circular orbits around each other.
We will assume that the first primary, with mass m1, is at least as heavy as the
second, with mass m2. The motion of the third body is most naturally described
in a co-rotating coordinate system, in which the primaries appear to be at rest.
The origin of this frame is at the center of mass of the two primaries, its x axis is
in the direction from m1 to m2, its z axis is along the direction of the orbital angular
velocity of the two primaries, and its y axis completes the right-handed orthogonal
triad. Figure 10.11 illustrates the frame and axis definitions.

Our analysis will follow that of Danby [8], and will employ kinematic equations
in a rotating frame developed in Sect. 3.1.3. We use Eq. (3.15) for the position vector

8In discussing the Sun/Earth Lagrange points, “Earth” means the system of the Earth and the Moon,
the Sun is the first body, and the mass and location of the second body are the summed Earth/Moon
mass and the location of the Earth/Moon center of mass.
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Fig. 10.11 The five Lagrange points

of the spacecraft with respect to the center of mass of the two primaries, letting F
denote the inertial frame and G denote the co-rotating frame, which differ only
by a rotation about the z axis. Because ! is in the positive z direction, it has the
same representation in both frames, so we can omit its frame-specifying subscript.
The angular velocity is also constant, so the P! term vanishes, giving

RrG D AGF RrF �! � .! � rG/ � 2! � PrG (10.130)

The acceleration in the inertial frame is due to the gravitational attraction of the two
primaries,

RrF D ��1 .r � r1/F
kr � r1k3 � �2

.r � r2/F
kr � r2k3 (10.131)

where �i D GMi , so the spacecraft dynamics is governed by the equation

RrG D ��1 .r � r1/G
kr � r1k3 � �2

.r � r2/G
kr � r2k3 �! � .! � rG/ � 2! � PrG (10.132)

All vectors have now been expressed in the co-rotating frame, so we will omit the
subscript G for the remainder of the discussion.

We want to prove the existence of five Lagrange points, or libration points, which
are points of static equilibrium where Rr and Pr are zero. Thus we are looking for
solutions of

0 D � �1

kr � r1k3

2
4
x � x1
y

z

3
5 � �2

kr � r2k3

2
4
x � x2
y

z

3
5C �1 C �2

a3

2
4
x

y

0

3
5 (10.133)
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We have used the relation !2 D .�1C�2/=a3, which follows from Eq. (10.43) with
a being the radius of the orbit of the two primaries. The z component of Eq. (10.133)
requires z D 0, so any equilibrium point must lie in the x�y plane. The y component
requires either y D 0 or

0 D � �1

kr � r1k3 �
�2

kr � r2k3 C
�1 C �2
a3

(10.134)

If y ¤ 0, substituting this into the x component of Eq. (10.133) leads to the
requirement

0 D �1x1

kr � r1k3 C
�2x2

kr � r2k3 (10.135)

The definition of the center of mass means that �1x1 D ��2x2, so it follows from
Eq. (10.135) that kr� r1k D kr� r2k. Substituting this into Eq. (10.134) then gives
kr � r1k D kr � r2k D a. This defines the two Lagrange points L4 and L5 at
the vertices of two equilateral triangles in the orbital plane of the two primaries,
whose other vertices are the locations of the primaries. These are illustrated for
the case that m1 D 3m2 in Fig. 10.11. The figure shows that the resultant of the
acceleration vectors a1 due to the attraction of m1 and a2 due to the attraction of m2

provides the centripetal acceleration ac D !� .!�r/ needed for equilibrium at L4.
There is no simple expression for the location of the collinear Lagrange points,

the points with y D z D 0. Assume that m2 � m1 and let

ˇ � m2

m1 Cm2

; so that x1 D �ˇa and x2 D .1 � ˇ/a (10.136)

We also let x D �a, so that Eq. (10.132) for a body at rest on the x axis gives

R�
!2
D �.1 � ˇ/ � C ˇj� C ˇj3 � ˇ

� C ˇ � 1
j� C ˇ � 1j3 C � (10.137)

The right side of this equation is plotted in Fig. 10.12 for j�j � 1:5 for the case that
m1 D 3m2. The function will have this general shape for any mass ratios. We notice
two things. First, it is easy to see that there are three collinear Lagrange points: L1
between m1 and m2, L2 on the side of m2 away from m1, and L3 on the side of
m1 away from m2.9 The second point is that the acceleration in the vicinity of a
collinear Lagrange point is always away from the Lagrange point, meaning that the
collinear Lagrange points are unstable. If m2 � m1, the usual case, it is not too
difficult to show that L2 and L1 are at x � x2 ˙ .ˇ=3/1=3a, respectively, and that
L3 is at x � �.1C 5ˇ=12/a. The Sun/Earth L1 and L2 points are about 0.01 AU,
or about 1:5 � 106 km, from the Earth, because ˇ � 3 � 10�6 for that system.

9This labeling convention is not universally followed.
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A complete analysis of the stability of the Lagrange points requires consideration
of the Coriolis acceleration, the last term in Eq. (10.132). We will only state the
result obtained by linearizing this equation in the vicinity of L4 and L5, Danby
shows that these points are stable if m1=m2 > .25 C 3p69/=2 D 24:96. Stable
points at L4 or L5 are called Trojan points, after the Trojan asteroids at the Sun-
Jupiter L4 and L5 points. The Earth/Moon Trojan points are stable, but solar gravity
leads to large motions about these points [11, 19].

Although the collinear Lagrange points are unstable, relatively small control
forces can keep spacecraft in orbits around these points, and a variety of uses have
been found for spacecraft in such orbits [9]. The International Sun-Earth Explorer
3 (ISEE-3), the Solar and Heliospheric Observatory (SOHO), the Advanced Com-
position Explorer (ACE), and WIND spacecraft have all been stationed near the
Sun/Earth L1 point to observe the Sun and the solar wind. Radio emissions
from the Sun would complicate communication with a spacecraft exactly at L1.
The Sun/Earth L2 point is useful for stationing an instrument that needs to be
shielded from thermal energy emitted by both the Sun and the Earth, which are both
on the same side of the spacecraft. Spacecraft are almost never placed exactly at L2,
however, since they would not be able to use Solar power at that point. The WMAP,
Herschel, and Planck spacecraft have all been placed in orbits around L2, and the
James Webb Space Telescope (JWST) is planned to be placed there. An orbit about
the Earth/Moon L2 point has been proposed as the location for a data relay satellite
to communicate with human or robotic explorers on the back side of the Moon.
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Chapter 11
Environment Models

The analysis of spacecraft attitude and trajectory motion depends on several
environmental models, as does the analysis of sensor measurements. This chapter
presents models of the Earth’s magnetic field and atmosphere and of the motion of
the Sun and its planets as seen from the Earth.

11.1 Magnetic Field Models

In a region with no appreciable electric currents, a magnetic field can be computed
as the negative gradient of a magnetic scalar potential arising from a collection
of magnetic poles, each providing a 1=r contribution. This is similar to the
gravitational potential contributed by a collection of point masses, so magnetic field
models use the same mathematical apparatus as gravity field models. Following
the same path as in Sect. 10.3.1 leads to a spherical harmonics expansion for the
magnetic potential. There is one significant difference between the magnetic and
gravitational potentials. Gravitational forces are always attractive, while magnetic
forces can be attractive or repulsive, represented by North and South magnetic
poles with pole strengths of opposite signs. In fact, isolated poles are never found in
nature: poles always appear in pairs, North and South poles of equal and opposite
magnitude, comprising a magnetic dipole.1 As a result, the first term on the right
side of the magnetic analog of Eq. (10.94) is absent, leading to

V.r/ D a
1X
nD1

a
r

�nC1 nX
mD0
NPm
n .sin	0/Œgmn .t/ cos.m�/Chmn .t/ sin.m�/� (11.1)

1Some physical theories predict the occurrence of isolated magnetic monopoles, but none has of
yet been detected.

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__11,
© Springer Science+Business Media New York 2014
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This equation is presented in the form used for the International Geomagnetic
Reference Field (IGRF) [4]. The parameter a D 6371:2 km is the magnetic spherical
reference radius, and the coefficients gmn .t/ and hmn .t/ are conventionally given in
units of nanotesla (nT). The bars over the associated Legendre functions indicate
that they are the Schmidt semi- (or quasi-) normalized functions, defined as [20]

NPm
n D

s
.2 � ı0m/ .n �m/Š

.nCm/Š P
m
n (11.2)

The IGRF is produced and maintained under the auspices of the International
Association of Geomagnetism and Aeronomy (IAGA). It represents the internal
part of the Earth’s magnetic field, which is almost entirely generated in the Earth’s
core and is slowly varying on time scales of years to decades [12]. In addition to
the internal field, magnetic fields with time scales ranging mostly from seconds to
hours are generated by electric currents in the ionosphere and magnetosphere. These
fields, which are not included in the IGRF, are as small as 20 nT during magnetically
quiet periods, but can be as large as 1,000 nT or greater during a magnetic storm.

Because of the time variation of the Earth’s field, the IGRF provides coefficients
gmn .Ti / and hmn .Ti / at 5-year intervals. The eleventh generation IGRF has coeffi-
cients of degrees n � 10 for 1900 � Ti < 2000 and n � 13 for 2000 � Ti � 2010.
The coefficients for times between Ti and TiC1 are found by linear interpolation.
This IGRF also includes a predictive model for linear extrapolation to years after
2010, comprising secular variations Pgmn .2010/ and Phmn .2010/ (in nT/year) only
for degrees n � 8. When one of the 5-year constituent models is considered
definitive, it is called a Definitive Geomagnetic Reference Field (DGRF), and its
coefficients are frozen. The eleventh generation IGRF is considered definitive for
the years 1945–2005. The RMS errors in the more recent models are estimated to
be about 10 nT.

11.1.1 Dipole Model

Keeping only the n D 1 terms in Eq. (11.1) gives the dipole approximation

V.r/ D a3

r2

� NP 0
1 .sin	0/g01 C NP 1

1 .sin	0/.g11 cos� C h11 sin�/
�

D a3

r2

�
g01 sin	0 C g11 cos	0 cos� C h11 cos	0 sin�

	 D m � r
r3

(11.3)

where

m D a3
2
4
g11
h11
g01

3
5 D m

2
4

sin �m cos˛m
sin �m sin˛m

cos �m

3
5 (11.4)
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is the magnetic dipole in the ECEF frame. The coefficients from the 2005 DGRF:
g01 D �29554:63 nT, g11 D �1669:05 nT, and h11 D 5077:99 nT give the dipole
magnitude2 m D a3 � 30;034 nT D 7:77 � 1022 Am2 as well as the orientation
�m D 169:7ı and ˛m D 108:2ı. Note that the Earth’s North magnetic pole is
near the South geographic pole, where it must be because opposite poles attract.
The magnetic field is given by

B.r/ D �rV.r/ D 3.m � r/r � r2m
r5

(11.5)

The magnetic field strength falls off with distance as 1=r3, and it is twice as great at
the magnetic poles, r km, as at the magnetic equator, r ? m.

The Earth’s magnetic field is often used as a reference for attitude determination
or control, so it is of interest to know how the direction of the ambient magnetic field
varies as a spacecraft moves around its orbit. The time derivative of the magnetic
field at the location of the spacecraft can be separated into components parallel and
perpendicular to the field by

PB D kBk�2
h
.B � PB/BC .B � PB/ � B

i
D kBk�2.B � PB/BC˝ � B (11.6)

where˝ � kBk�2.B� PB/ is the rotation rate of the magnetic field. The first term on
the right side of Eq. (11.6) gives the rate of change of the magnitude of the magnetic
field, which is of less interest for attitude estimation and control. For a spacecraft
in a circular orbit, r is constant and the spacecraft velocity in the GCI frame is
Pr D !o � r, where !o is the orbital angular velocity, so

PB D 3.m � r/.!o � r/C 3Œm � .!o � r/�r
r5

(11.7)

The derivation of Eq. (11.7) assumes that the magnetic dipole is constant in GCI,
which is not exactly true due to the rotation of the Earth. The orbital angular velocity
of a near-Earth spacecraft is about 15 times greater than the rotation rate of the
Earth, though, so ignoring the motion of the dipole in the GCI frame is a reasonable
approximation. Then, after a significant amount of vector algebra, we find that

˝ D 3 Œ.m � r/
2 Cm2r2�!o C .m �!o/Œ2.m � r/r � r2m�

3.m � r/2 Cm2r2
(11.8)

The derivation of Eq. (11.8) makes use of the fact that r � !o D 0, because !o is
along the orbit normal. This result has two interesting limits. If the orbit plane is

2An extra factor of 4=�0 D 107 is needed to convert to Am2.
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the magnetic equatorial plane, then m!o D ˙!om and m � r D 0, so ˝ D 0 as
expected. In the more interesting case that the orbit plane contains the magnetic pole
directions, m �!o D 0, and

˝ D 3
�
.m � r/2 Cm2r2

3.m � r/2 Cm2r2

�
!o; for m in the orbit plane (11.9)

This has the maximum and minimum magnitudes˝ D 3!o at the magnetic equator
and˝ D 3!o=2 at the magnetic poles.

11.2 Atmospheric Density

Modeling the local atmospheric density, �, is quite difficult, and many decades of
work have resulted in many different models. Vallado [18] provides an excellent
description of the development of atmospheric models, including many of the
common assumptions built into them. This section is devoted to the development of
atmospheric modeling including the numerous existing models with their benefits
and shortcomings.

11.2.1 Exponentially Decaying Model Atmosphere

The simplest of all the models is a fully static, exponentially decaying model. This
model [19] assumes the atmospheric density decays exponentially with increasing
height. This model is fully static in the sense that the densities are independent of
time. Also, the exponential model assumes an axially symmetric atmosphere about
the polar axis. The exponential model is given by

� D �0 exp

�
�h � h0

H

�
(11.10)

where �0 and h0 are reference density and height, respectively, h is the height above
the ellipsoid, and H is the scale height, which is the fractional change in density
with height. Table 11.1 gives values of h0, �0, and H for various ranges of h [19].
The exponential atmosphere is a good choice for preliminary simulations because
it yields decent results and is computationally efficient. However, this model is not
usually sufficient for high fidelity simulations.
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Table 11.1 Exponential
atmospheric model

h (km) h0 (km) �0 (kg/m3) H (km)

0–25 0 1.225 8.44
25–30 25 3.899�10�2 6.49
30–35 30 1.774�10�2 6.75
35–40 35 8.279�10�3 7.07
40–45 40 3.972�10�3 7.47
45–50 45 1.995�10�3 7.83
50–55 50 1.057�10�3 7.95
55–60 55 5.821�10�4 7.73
60–65 60 3.206�10�4 7.29
65–70 65 1.718�10�4 6.81
70–75 70 8.770�10�5 6.33
75–80 75 4.178�10�5 6.00
80–85 80 1.905�10�5 5.70
85–90 85 8.337�10�6 5.41
90–95 90 3.396�10�6 5.38
95–100 95 1.343�10�6 5.74
100–110 100 5.297�10�7 6.15
110–120 110 9.661�10�8 8.06
120–130 120 2.438�10�8 11.6
130–140 130 8.484�10�9 16.1
140–150 140 3.845�10�9 20.6
150–160 150 2.070�10�9 24.6
160–180 160 1.224�10�9 26.3
180–200 180 5.464�10�10 33.2
200–250 200 2.789�10�10 38.5
250–300 250 7.248�10�11 46.9
300–350 300 2.418�10�11 52.5
350–400 350 9.158�10�12 56.4
400–450 400 3.725�10�12 59.4
450–500 450 1.585�10�12 62.2
500–600 500 6.967�10�13 65.8
600–700 600 1.454�10�13 79.0
700–800 700 3.614�10�14 109.0
800–900 800 1.170�10�14 164.0
900–1,000 900 5.245�10�15 225.0
>1,000 1,000 3.019�10�15 268.0

11.2.2 Harris-Priester Model Atmosphere

The Harris-Priester atmosphere [6] was one of the first attempts to model density
in terms of atmospheric temperature. Harris and Priester noted that the atmosphere
is mainly governed by the laws of thermodynamics and equilibrium in diffusion,
conduction and the absorption of thermal energy from the Sun. Density for the
Harris-Priester atmosphere is determined by simultaneous integration of the heat
conduction and diffusion equations for each of the molecular constituents in the
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atmosphere, yielding the number density for each constituent. Using the ideal gas
law, the density can then be calculated. The Harris-Priester model has resulted
in several lookup tables where one can determine the density as a function of
the local time and altitude for a prescribed solar-flux value. These tables are
convenient for determining the density variation within single day and may be useful
in short term simulations. While the Harris-Priester model accounts for many of
the phenomena affecting the atmosphere, it lacks the ability to model seasonal,
latitudinal, and geomagnetic variations with the accuracy needed for high fidelity
long term simulations.

11.2.3 Jacchia and GOST Model Atmospheres

Throughout the late 1960s and 1970s, Jacchia produced a series of models [7–9]
and updates that explicitly handle each of the observed atmospheric phenomena.
The basis for each of the Jacchia models is essentially the same as the Harris-Priester
model with one major exception. Whereas the Harris-Priester model determines the
temperature by integrating the heat conduction equation, Jacchia uses an empirically
derived temperature profile to integrate the diffusion equation for each constituent.
Another difference between the Harris-Priester and Jacchia models is that the
Harris-Priester model accounts for all of the solar phenomena within the integration
of the conduction equation whereas Jacchia takes a different approach and adds
temperature and/or density corrections to account for each of the phenomena.
A particular advantage to Jacchia’s models is that he and his colleagues used real
spacecraft data to curve fit certain phenomena. This allows Jacchia’s models to
accurately represent actual atmospheric conditions even though all the phenomena
are not precisely modeled. One shortcoming of Jacchia’s models are that there is
no standard set of lookup tables, meaning that the entire temperature/density profile
must be determined via numeric integration for each instant, limiting the models’
use in real-time applications.

Jacchia’s models must be numerically integrated because of the empirical
temperature formula that he used. By proposing an alternative temperature function,
Roberts [15] was able to analytically integrate the barometric and diffusion equa-
tions [17]. The resulting density profile proved to be a very good approximation
to Jacchia’s densities for all altitudes. The Jacchia-Roberts atmosphere produces
very good results and has been implemented in NASA’s Goddard Trajectory
Determination System (GTDS) [13].

One last model atmosphere of interest is the Russian GOST atmosphere [21].
The GOST model is a purely empirical model constructed using data from the
Cosmos spacecraft [17]. The main advantage to the GOST model is that it is
extremely computationally efficient. In contrast the other models described, except
the static model, the GOST model determines the density directly rather than com-
puting first the temperature profile of the atmosphere. Five multiplicative correction
factors then account for variations in the solar flux, diurnal effect, semiannual
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changes, and geomagnetic activity. Because the GOST model is empirically derived,
it requires numerous extensive lookup tables to determine the proper coefficients
corresponding to the current atmospheric conditions. The GOST model has been
shown to provide good agreement with other semi-analytic models such as Jacchia
1977 [1] and NRLMSIS-00 [22].

11.2.4 Jacchia-Bowman 2008 (JB2008) Model Atmosphere

Because Jacchia’s models treat each of the known phenomena individually, they
provide a good base that can be refined given new experimental data and advances
in research. Such is the case with the Jacchia-Bowman model atmospheres [2, 3].
Bowman uses new spacecraft drag data and new solar indices in order to develop
corrections to Jacchia’s 1970 model [7]. Bowman has incorporated new solar
indices apart from the standard F10:7 index in order to determine the exospheric
temperature [2], fitted new semiannual and seasonal-latitudinal corrections, added
high altitude corrections, and provided a new means to account for geomagnetic
activity. The Jacchia-Bowman model atmosphere uses Jacchia’s original tempera-
ture function, which means that numeric integration is required in order to determine
the density distribution. While the model is slow, Bowman’s corrections result in a
substantial reduction in density error over other atmospheric models [2].

Because of the high quality of results produced by the Jacchia-Bowman model,
it is the standard model used by the Joint Space Operations Center (JSpOC) when
tracking objects. The most current version of the Jacchia-Bowman model, JB2008,
can be found at the website http://sol.spacenvironment.net/~JB2008/. Along with
Fortran source code, the website also offers many relevant publications relating to
the JB2008 model and its previous versions, histories of solar flux data and magnetic
storm indices. In this section the JB2008 model is described in detail.

11.2.4.1 Temperature Profile

Jacchia’s models, from which the JB2008 model is constructed, begin by deter-
mining the temperature profile of the atmosphere at a specific time and location.
This temperature profile is subsequently used to integrate the diffusion equations
in order to determine the local density. Defining the temperature profiles begins by
determining the exospheric temperature. The exospheric temperature is influenced
by many factors including solar activity, local time and geomagnetic activity.
The effect of solar activity on the exospheric temperature can be represented by
the uncorrected exospheric temperature, Tc [2]

Tc D 392:4C 3:227 NFS C 0:298 �F10C 2:259 �S10C 0:312 �M10C 0:178 �Y10
(11.11)

http://sol.spacenvironment.net/~JB2008/
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with

NFS D WT
NF10 C .1 �WT / NS10 (11.12a)

WT D min

0
@
 NF10
240

!1=4
; 1

1
A (11.12b)

and Tc expressed in degrees Kelvin. The� values are given by�X D X� NX where
X is the current value of the solar index and NX is the 81-day centered average value
of the index, centered at the desired time. F10, S10, M10, and Y10 are indices which
are used to describe solar activity, as described in detail in [2]. These indices are
typically tabulated as daily values. However, care must be taken when reading values
from a lookup table. Each index has its own associated time lag for implementation.
Values for F10 and S10 have a time lag of 1 day,M10 has a 2 day time lag and Y10 has
a 5 day time lag. To clarify this point, suppose we want to determine the exospheric
temperature on 11-February-2011. The values F10, S10, and their centered averages
would correspond to those tabulated for 10-February-2011. TheM10 and NM10 values
would come from the tabulated values for 9-February-2011, and the values for Y10
would be read from 6-February-2011.

Once the uncorrected exospheric temperature is determined, correction factors
corresponding to diurnal and geomagnetic effects are added in. The diurnal vari-
ation accounts for the day-to-night variation in density of the atmosphere. Using
spacecraft drag data to derive the atmospheric density has shown that the maximum
density occurs around 14h00 local solar time while a minimum in density occurs
around 04h00 local solar time [10]. Accounting for the diurnal variation, the local
atmospheric temperature is given by

T` D Tc f1CR Œsinm.�/C .cosm � � sinm �/j cosn .�=2/ j�g (11.13)

with

� D 1

2
j	C ıˇj (11.14a)

� D 1

2
j	 � ıˇj (11.14b)

� D H C ˇ C p sin.H C �/ (11.14c)

H D � � �ˇ (11.14d)

where 	 is the geodetic latitude, � is the longitude, ıˇ is the declination of the Sun,
and �ˇ is the right ascension (longitude) of the Sun. The constants R, m, n ˇ, p,
and � are derived so that the model given by Eq. (11.13) best fit spacecraft drag data;
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R D 0:31 ˇ D C37ı

m D 2:5 p D C6ı

n D 3:0 � D C43ı

In addition to modeling of the diurnal bulge, Bowman has introduced an additional
diurnal correction [3]. The temperature correction can be determined by first
defining

F D 0:1.F10 � 100/ (11.15a)

T D LST

24
(11.15b)

y D cos	 (11.15c)

where LST is the local spacecraft time give by LST D .H C /180ı


24
360

which
is then modulated so that 0 < LST � 24. The temperature corrections were
determined by curve-fitting data over certain altitude intervals. With h being the
altitude in the ECEF frame given by Eq. (2.77), the results of these fits are given by

120 � h � 200 km

H D .h � 120/=80
A D C17 C C18yT C C19yT 2 C C20yT 3 C C21yF C C22yF T C C23yF T 2

B D C1 C C2F C C3F T C C4F T 2 C C5F T 3 C C6F T 4 C C7F T 5

C C8yT C C9yT 2 C C10yT 3 C C11yT 4 C C12yT 5 C C13y C C14Fy
C C15FyT C C16FyT 2

�Tc D .3A � B/H2 C .B � 2A/H3 (11.16)

200 < h � 240 km

H D 4=5

�Tc D C1H C C2FH C C3FHT C C4FHT
2 C C5FHT

3 C C6FHT
4 C C7FHT

5

C C8yHT C C9yHT
2 C C10yHT

3 C C11yHT
4 C C12yHT

5 C C13yH

C C14FyH C C15FyHT C C16FyHT
2 C C17 C C18yT C C19yT

2 C C20yT
3

C C21Fy C C22FyT C C23FyT
2 (11.17)
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240 < h � 300 km

H D .h� 200/=50; Nh D 3; hp D .h� 240/=6

A D C1H C C2FH C C3FHT C C4FHT
2 C C5FHT

3 C C6FHT
4

C C7FHT
5 C C8yHT C C9yHT

2 C C10yHT
3 C C11yHT

4 C C12yHT
5

C C13yH C C14FyH C C15FyHT C C16FyHT
2 C C17 C C18yT

C C19yT
2 C C20yT

3 C C21Fy C C22FyT C C23FyT
2

B D C1 C C2F C C3F T C C4F T
2 C C5F T

3 C C6F T
4 C C7F T

5 C C8yT C C9yT
2

C C10yT
3 C C11yT

4 C C12yT
5 C C13y C C14Fy C C15FyT C C16FyT

2

X D B1 C B2F C B3F T C B4F T
2 C B5F T

3 C B6F T
4 C B7F T

5 C B8yT

C B9yT
2 C B10yT

3 C B11yT
4 C B12yT

5 C B13y NhC B14y NhT C B15y NhT 2

C B16y NhT 3 C B17y NhT 4 C B18y NhT 5 C B19y

Y D B13y C B14yT C B15yT
2 C B16yT

3 C B17yT
4 C B18yT

5

C D 3X � Y � 3A� 2B

D D X � .AC B C C/

�Tc D AC Bhp C Ch2p CDh4p (11.18)

300 < h � 600 km

H D h=100
�Tc D B1 C B2F C B3F T C B4F T 2 C B5F T 3 C B6F T 4 C B7F T 5

C B8yT C B9yT 2 C B10yT 3B11yT 4 C B12yT 5 C B13yH
C B14yHT C B15yHT 2 C B16yHT 3 C B17yHT 4

C B18yHT 5 C B19y (11.19)

600 < h � 800 km

H D 6; hp D .h � 600/=100
A D B1 C B2F C B3F T C B4F T 2 C B5F T 3 C B6F T 4 C B7F T 5

C B8yT C B9yT 2 C B10yT 3 C B11yT 4 C B12yT 5 C B13yH
C B14yHT C B15yHT 2 C B16yHT 3 C B17yHT 4 C B18yHT 5 C B19y

B D B13y C B14yT C B15yT 2 C B16yT 4 C B17yT 4 C B18yT 5

C D �.3C 4B/=4
D D .AC B/=4

�Tc D AC Bhp C Ch2p CDh3p (11.20)
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Table 11.2 Diurnal
temperature correction factors

i Bi Ci

1 �0:457512297 � 101 �0:155986211 � 102

2 �0:512114909 � 101 �0:512114909 � 101

3 �0:693003609 � 102 �0:693003609 � 102

4 0:203716701 � 103 0:203716701 � 103

5 0:703316291 � 103 0:703316291 � 103

6 �0:194349234 � 104 �0:194349234 � 104

7 0:110651308 � 104 0:110651308 � 104

8 �0:174378996 � 103 �0:220835117 � 103

9 0:188594601 � 104 0:143256989 � 104

10 �0:709371517 � 104 �0:318481844 � 104

11 0:922454523 � 104 0:328981513 � 104

12 �0:384508073 � 104 �0:135332119 � 104

13 �0:645841789 � 101 0:199956489 � 102

14 0:409703319 � 102 �0:127093998 � 102

15 �0:482006560 � 103 0:212825156 � 102

16 0:181870931 � 104 �0:275555432 � 101

17 �0:237389204 � 104 0:110234982 � 102

18 0:996703815 � 103 0:148881951 � 103

19 0:361416936 � 102 �0:751640284 � 103

20 0:637876542 � 103

21 0:127093998 � 102

22 �0:212825156 � 102

23 0:275555432 � 101

h < 120 km or 800 km < h

�Tc D 0 (11.21)

The coefficients Bi and Ci can be found in Table 11.2.

During calculation of the diurnal temperature variation, Eq. (11.13), it was
specifically assumed that this temperature occurs during times of no geomagnetic
activity [8]. There are several means to account for the effect of geomagnetic activity
on the density. The first method, proposed by Jacchia et al. [10] uses an empirically
derived temperature correction based on the 3-h geomagnetic planetary index Kp .
The empirical formulation was later updated to incorporate a latitudinal dependence.
This method was found to work well for altitudes greater than 200 km, but fails to
accurately match data below this height. To overcome this shortcoming a hybrid
formula that includes both a temperature and density correction can be applied
for altitudes lower than 200 km. A new method proposed by Bowman uses the
DST (Disturbance Storm Time) index in order to calculate a temperature correction,
�TDST [2].
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Given T`, the diurnal correction factor�Tc and the geomagnetic correction factor
�TDST , the local exospheric temperature, T1 is calculated as

T1 D T` C�Tc C�TDST (11.22)

The atmospheric temperature profile is assumed to have a constant temperature
T0 D 183 K at an altitude of h0 D 90 km. The temperature gradient at h0 is also
assumed equal to zero. From there the temperature rises rapidly to an inflection
temperature, Tx at a height of hx D 125 km. Above 125 km the temperature
continues to increase in an asymptotic form towards the exospheric temperature T1.
The inflection temperature has been empirically defined as

Tx D aC bT1 C c exp ŒdT1� (11.23)

with the constant coefficients

a D 371:6678; b D 0:02385
c D �392:8292; d D �0:0021357

Below hx the temperature profile is given by a 4th-order polynomial

T .h/ D Tx C
4X

nD1
cn.h � hx/n; 90 < h < hx km (11.24)

where the coefficients, cn are determined using the following boundary conditions

T .h0/ D 183 (11.25a)

dT

dh

ˇ̌
ˇ̌
h0

D 0 (11.25b)

Gx � dT

dh

ˇ̌
ˇ̌
hx

D 1:90Tx � T0
hx � h0 (11.25c)

d2T

dh2

ˇ̌
ˇ̌
hx

D 0 (11.25d)

For h > hx the temperature profile is asymptotic and the temperature is given by

T .h/ D Tx C 2.T1 � Tx/


tan�1
�
Gx.h � hx/
2.T1 � Tx/

�
1C 4:5 � 10�6.h � hx/2:5

��

hx < h
(11.26)

where Gx is as given in Eq. (11.25c).
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11.2.4.2 Barometric Equation

For altitudes between 90 and 105 km, the atmospheric density is computed
by integrating the barometric equation. The differential form of the barometric
equation is

d ln.�/ D d ln

 NM
T

!
�
NMg

R�T
dh (11.27)

where R� D 8:31432 J/(K-mol) is the ideal gas constant, g is the local acceleration
due to gravity given by

g D 9:80665
�
1C h

Re

��2
(11.28)

where Re D 6356:766 km and NM is the mean molecular mass of the atmosphere.
For 90 < h � 105 km, NM is approximated by means of a 6th-order polynomial

NM.h/ D
6X

nD0
cn.h � 90/n; 90 < h < 105 km (11.29)

where the coefficients are given by

c0 D 28:15204; c1 D �8:5586 � 10�2; c2 D 1:2840 � 10�4
c3 D �1:0056 � 10�5; c4 D �1:0210 � 10�5; c5 D 1:5044 � 10�6
c6 D 9:9826 � 10�8

After integrating the barometric equation, the resulting density is given by

�uncorr.h/ D �0
 NM.h/

NM0

!�
T0

T .h/

�
exp

�
�F.h/
R�

�
(11.30)

where

F.h/ �
Z h

h0

NM.�/g.�/

T .�/
d� (11.31)

The density at h0 is �0 D 3:46 � 10�6 kg/m3. Note that T0 D 183 K andNM0 � NM.h0/. The subscript “uncorr” has been added to the density in Eq. (11.30)
because this density does not include correction factors for the observed semiannual,
Eq. (11.39), and seasonal-latitudinal, Eq. (11.42), variations derived from drag data.
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These correction factors must be applied to determine the density. The integral given
in Eq. (11.31) must be computed numerically. A constant step, 6-point quadrature
rule was applied

Z b

a
f .x/dx � b � a

288
Œ19f .x0/C 75f .x1/C 50f .x2/C 50f .x3/C 75f .x/4 C 19f .x5/�

(11.32)

where the range from h0 to h was broken into intervals with b � a D 10 m. The
JB2008 Fortran code employed a 5-point quadrature rule, also with b � a D 10 m,
for the 90 < h � 105 km regime.

11.2.4.3 Diffusion Equation

For altitudes between 90 and 105 km, integration of the barometric equation is
sufficient to determine the atmospheric density (save for some additional correction
factors which will be discussed later). However, altitudes within this range are
not typical of spacecraft except during launch and end of life because the drag at
this height is high enough such that a spacecraft without thrusting will spiral back
to Earth. Above 105 km the atmosphere is assumed to be in diffuse equilibrium.
Here the density is computed by determining the number density of each of the
individual atmospheric constituents. The atmosphere is assumed to be composed
of six components: nitrogen, argon, helium, hydrogen, and atomic and molecular
oxygen (O and O2). The number density for each component is determined by
integrating the diffusion equation

dni

ni
D �Mig

R�T
dh � dT

T
.1 � ˛i / (11.33)

where ni , Mi , and ˛i are the number density (number of atoms per unit volume),
molecular weight, and thermal diffusion coefficient of component i . Before inte-
grating the diffusion equation, we need to know the number density at the boundary,
105 km. Given the density, �.105/, the number densities for five of the components,
excluding hydrogen, are determined as

ni D qiNA�.105/

NMSL

; i D N2; Ar; He (11.34a)

nO D 2NA�.105/
�

1

NM.105/
� 1

NMSL

�
(11.34b)

nO2 D NA�.105/
�
1C qO2

NMSL

� 1

NM.105/

�
(11.34c)

where qi is the volumetric fraction of each component in the mixture, NA is
Avogadro’s constant, given by 6:02214129 � 1023 mol�1, and NMSL D 28:960

is the mean molecular mass of the atmosphere at sea level. The number density
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Table 11.3 Atmospheric
composition at h D 90 km

Species (i ) qi Mi ˛i

Nitrogen (N2) 0.78110 28.0134 0
Oxygen (O2) 0.20955 31.9988 0
Oxygen (O) � 15.9994 0
Argon (Ar) 0.0093432 39.948 0
Helium (He) 0.0000061471 4.0026 �0.38
Hydrogen (H) � 1.00797 0

of hydrogen is not calculated in Eq. (11.34) because hydrogen does not have any
impact on the density at altitudes below 500 km. Because of this, altitudes above
105 km must be broken into two distinct regimes, one with 105 < h < 500 km
and one with 500 km � h. Also note that the density in Eq. (11.34) is the corrected
density at 105 km which includes the semiannual and seasonal-latitudinal correction
factors alluded to before.

105 < h < 500 km

The volumetric fraction, molecular weight, and thermal diffusion coefficient of each
component can be found in Table 11.3.

Integrating Eq. (11.33) results in

ln.ni .h// D ln.ni .105// � .1C ˛i / ln

�
T .h/

T .105/

�
� MiG.h/

R� (11.35)

where

G.h/ �
Z h

105

g.�/

T .�/
d� (11.36)

is again computed numerically by the 6-point quadrature and b � a D 10 m. Once
the number densities are calculated, the uncorrected density is determined as

�uncorr.h/ D 1

NA

X
i

Mini .h/ (11.37)

A discussion of the correction factors which need to be applied to determine the
final density will be discussed later.

500 km < h

Above 500 km hydrogen begins to have an impact on the density calculation.
To determine the density at any point above 500 km we begin by integrating
the barometric equation for all components, except hydrogen, up to an altitude
of 500 km. Next we determine the number density of hydrogen at this altitude
according to [8]

log10.nH.500// D 79:13 � 39:40 log10.T500/C 5:5 log10.T500/
2 (11.38)
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where T500 is the temperature at h D 500 km. Now the diffusion equations can be
integrated for each component, including hydrogen, up to the desired altitude. The
uncorrected density is then determined by Eq. (11.37).

11.2.4.4 Density Correction Factors

The density calculated to this point only includes correction factors accounting
for diurnal variations and geomagnetic activity. These are not the only phenom-
ena affecting the density that must be accounted for. The JB2008 atmospheric
model includes corrections that account for the observed semiannual variation and
seasonal-latitudinal variation of the lower atmosphere. Bowman has also proposed
a correction for high altitudes, h � 1;000 k [3].

11.2.4.5 Semiannual Variation

The semiannual variation describes how the density fluctuates throughout the year.
Analysis has shown that the period of this variation is about 6 months with density
maxima occurring in April and October and density minima occurring in January
and July. The semiannual density correction factor has the form

� log10 �SA D f .h/g.t/ (11.39)

where f .h/ and g.t/ are calculated via

NFSMJ D NF10 � 0:7 NS10 � 0:04 NM10 (11.40a)

Nh D h=1;000 (11.40b)

f .h/ D B1 C B2 NFSMJ C B3 NFSMJ NhC B4 NFSMJ Nh2 C B5 NF 2
SMJ
Nh (11.40c)

and

NFSM D NF10 � 0:75 NS10 � 0:37 NM10 (11.41a)

! D 2DOY � 1
365

(11.41b)

g.t/ D C1 C C2 sin.!/C C3 cos.!/C C4 sin.2!/C C5 cos.2!/

C NFSM ŒC6 C C7 sin.!/C C8 cos.!/C C9 sin.2!/C C10 cos.2!/�
(11.41c)

whereDOY is the current day of the yearDOY 2 Œ0; 367/. The coefficients Bi and
Ci can be found in Table 11.4.
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Table 11.4 Semiannual
variation correction factors

i Bi Ci

1 2:689� 10�1 �3:633� 10�1

2 �1:176� 10�2 8:506� 10�2

3 2:782� 10�2 2:401� 10�1

4 �2:782� 10�2 �1:897� 10�1

5 3:470� 10�4 �2:554� 10�1

6 �1:790� 10�2

7 5:650� 10�4

8 �6:407� 10�4

9 �3:418� 10�3

10 �1:252� 10�3

11.2.4.6 Seasonal-Latitudinal Variation

In calculation of the temperature profile, we have assumed the temperature to
be a constant 183 K at h D 90 km over the entire globe. In reality however,
the temperature at this height varies seasonally and over different latitudes. The
seasonal-latitudinal correction factor attempts to account for the variation in density
arising from our assumption. The correction factor is given by

S D 0:2.h � 90/ exp Œ�0:045.h � 90/� (11.42a)

˚ D JD � 2400000:5 � 36204
365:2422

(11.42b)

P D sin .2˚ C 1:72/ (11.42c)

� log10 �SL D sign.	/SP sin2.	/ (11.42d)

where JD is the current Julian Date. The seasonal-latitudinal correction is only
applicable to altitudes lower than 200 km. The semiannual variation and seasonal
latitudinal variation are multiplicative correction factors to density. Thus the
corrected density is given by

log10 �corr D log10 �uncorr C� log10 �SA C� log10 �SL (11.43)

11.2.4.7 High Altitude Density Correction

The last correction factor accounts for variations observed at high altitudes. The high
altitude correction factor was developed by Bowman after analysis of 25 spacecraft
with orbital altitudes between 1,500 and 4,000 km. The high altitude correction
factor follows as

h < 1;000 km

FHA D 1 (11.44)
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1;000 � h < 1;500 km

H D .h � 1;000/=500
F1;500 D D1 CD2

NF10 C 1;500D3 C 1;500D4
NF10

@F1;500

@h
D D3 CD4

NF10

FHA D 1C
�
3F1;500 � 500@F1;500

@h
� 3

�
H2C

�
500

@F1;500

@h
� 2F1;500 C 2

�
H3

(11.45)

1;500 � h km

FHA D D1 CD2
NF10 CD3hCD4h NF10 (11.46)

where the coefficients are given by

D1 D 2:2 � 10�1, D2 D �2:0 � 10�3
D3 D 1:15 � 10�3, D4 D �2:11 � 10�6

Once the high altitude correction factor, and corrected density have been
determined, the final atmospheric density is given by

� D FHA�corr (11.47)

11.3 Sun Position, Radiation Pressure, and Eclipse
Conditions

In order determine solar radiation pressure forces or torques acting on a spacecraft
or to process Sun sensor data, we must first determine where the Sun is relative to
the spacecraft and whether the spacecraft is shadowed by the Earth or the Moon.
The position of the Sun with respect to the Earth can be determined as follows [17].
First, the mean longitude, �ˇ, and mean anomaly of the Sun, Mˇ, are determined
in degrees as

�ˇ D 280:460ı C 36;000:771 TUT1 (11.48a)

Mˇ D 357:5277233ı C 35999:05034 TUT1 (11.48b)

where

TUT1 D JD.Y;M;D; h;m; s/ � 2;451;545
36;525

(11.49)



11.3 Sun Position, Radiation Pressure, and Eclipse Conditions 421

with JD computed as in Sect. 2.6.3. Both �ˇ and Mˇ are reduced to the range 0ı
to 360ı and the longitude of the ecliptic is determined in degrees as

�ecliptic D �ˇ C 1:914666471ı sin.Mˇ/C 0:019994643 sin.2Mˇ/ (11.50)

The obliquity of the ecliptic is given by

" D 23:439291ı � 0:0130042 TUT1 (11.51)

The unit vector in the direction from the Earth to the Sun is then

e˚ˇ D
2
4

cos.�ecliptic/

cos."/ sin.�ecliptic/

sin."/ sin.�ecliptic/

3
5 (11.52)

We omit subscripts to indicate the coordinate frame because all vectors in this
section are expressed in the GCI frame.

The distance, in AU, between the Earth and the Sun can be found by

r˚ˇ D 1:000140612� 0:016708617 cos.Mˇ/� 0:000139589 cos.2Mˇ/ (11.53)

and the position vector from the Earth to the Sun is r˚ˇ D r˚ˇe˚ˇ. After
converting the spacecraft position vector r to AU, the position vector from the
spacecraft to the Sun, expressed in the GCI frame is given

rsatˇ D r˚ˇ � r (11.54)

The distance rsatˇ, between the spacecraft and Sun (in AU) and the unit vector esatˇ
are then given by

rsatˇ D krsatˇk (11.55a)

esatˇ D rsatˇ
rsatˇ

(11.55b)

The pressure of solar radiation at the position of the spacecraft is then

Pˇ D Fˇ
c r2satˇ

(11.56)

where Fˇ, known as the solar constant, is the flux density of solar radiation at a
distance of 1 AU from the Sun, and c D 299;792;458 m/s is the speed of light.
The solar constant varies over the 11-year solar cycle from 1,361 W/m2 at solar
minimum to 1,363 W/m2 at solar maximum and is subject to rapid fluctuations as
large as 5 W/m2 at times of high or low solar activity.3 These fluctuations are very
difficult to predict, although daily data does exist [5].

3These recent measurements [11] are about 5 W/m2 lower than previous measurements [5].
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Given the position vector of the spacecraft and the position vector of the Sun,
it can now be determined whether or not the spacecraft is in the shadow of the
Earth. There are two main approaches to shadowing. The first assumes that the
shadow created by the Earth is a cylindrical projection of the Earth’s diameter along
the direction of the Sun to the Earth. In the cylindrical approximation, which is
generally adequate for spacecraft in lower altitude orbits, the spacecraft is in the
Earth’s shadow if and only if

r � e˚ˇ < �
q
r2 �R2˚ (11.57)

where r is the spacecraft position vector andR˚ is the equatorial radius of the Earth,
which is approximated as a sphere. For a spacecraft in a geosynchronous orbit with
radius 42,164 km, Eq. (11.57) gives an eclipse time of 69.6 min for the longest
eclipse, which occurs at the equinoxes when the Sun is in the orbital plane of the
spacecraft.

The second shadowing approach accounts for the finite diameters of both the Sun
and the Earth. This more accurate approach has a conical shadow model with partial
shadowing in a region called the penumbra. The more complex eclipse conditions
for the conical shadow model, including illumination levels in the penumbra, can be
found in Wertz [19]. His equations show that a spacecraft in a geostationary orbit
spends 67.5 min in total shadow and 4.3 min in the penumbra during its longest
eclipse.

11.4 Orbital Ephemerides of the Sun, Moon, and Planets

The best source for accurate orbital ephemerides of the Sun, Moon, and planets is
DE405/LE405 computed by the Jet Propulsion Laboratory (JPL) of the California
Institute of Technology [16]. These ephemerides are obtained by precise numerical
integration of the equations of motion of the bodies. This computation has four main
ingredients: formulating the equations of motion, determining the initial conditions,
performing the integrations, and making the results available in a useful form. It is
believed that the difficulty of accurately determining the initial conditions is the
limiting factor in the accuracy of the solutions.

The equations of motion are described in detail in [16]. They include “(a) point-
mass interactions among the Moon, planets, and Sun; (b) general relativity
(isotropic, parameterized post-Newtonian); (c) Newtonian perturbations of selected
asteroids; (d) action upon the figure of the Earth from the Moon and Sun; (e) action
upon the figure of the Moon from the Earth and Sun; (f) physical libration of the
Moon, modeled as a solid body with tidal and rotational distortion, including both
elastic and dissipational effects; (g) the effect upon the Moon’s motion caused by
the tides raised upon the Earth by the Moon and Sun; and (h) the perturbations of
300 asteroids upon the motions of Mars, the Earth, and the Moon.” The reference
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frame for the ephemerides is the International Celestial Reference Frame [14].
The initial conditions are determined by fitting data from optical observations,
meridian transits, photographic and CCD astrometry, occultation timings, astrolabe
observations, radiometric emission measurements, ranging data, VLBI data, and
lunar laser range data.

The planetary ephemerides are saved as files of Chebyshev polynomials for the
Cartesian positions and velocities of the Sun, Moon, and planets, typically at 32-day
intervals. They can be obtained from JPL’s interactive “Horizons” website at http://
ssd.jpl.nasa.gov/?horizons. The positional accuracy of the inner planet ephemerides
is believed to be a few thousandths of an arcsecond, and a few hundredths of an
arcsecond for the outer planets. Reference [16] also provides Keplerian elements
for applications that do not require the full accuracy of an integrated ephemeris.
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Chapter 12
Review of Control and Estimation Theory

The purpose of this chapter is to provide a review of control and estimation theory.
It is expected that the reader has some basic knowledge of dynamical systems and
probability theory. Several of the concepts shown in this chapter are used throughout
the text. First a basic review of system modeling using differential equations is
shown. This is followed by linear and nonlinear control theory. Then estimation
concepts, such as maximum likelihood and the Kalman filter, are reviewed. The
reader is encouraged to read the several cited texts in this chapter for further
information.

12.1 System Modeling

In this section system modeling is reviewed. This subject is introduced by first
deriving the equations of motion for the classic inverted pendulum problem. Then,
state and observation models for both nonlinear and linear systems are introduced.
Finally, discrete-time systems are reviewed.

12.1.1 Inverted Pendulum Modeling

The classic inverted pendulum mounted to a motorized cart is shown in Fig. 12.1a,
where x is the cart position,M is the mass of the cart,m is the mass of the pendulum,
` is the length to pendulum center of mass, J D m`2=3 is the mass moment of
inertia of the pendulum, modeling it as a uniform thin rod, � is the pendulum angle
from vertical, and u is the force applied to the cart. The associated free body diagram
is shown in Fig. 12.1b, where N and P are reaction forces along the horizontal

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8__12,
© Springer Science+Business Media New York 2014
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Fig. 12.1 Inverted pendulum (a) and associated free body diagram (b)

and vertical directions, respectively, and Ff is the friction force which is given by
Ff D c Px, where c is a constant. The axes i1 and i2 are inertially fixed, which
represent the horizontal and vertical directions, respectively.

The locations of the centroid of the pendulum, along the i1 and i2 axes, denoted
by xc and yc , respectively, are given by

xc D x C ` sin � (12.1a)

yc D ` cos � (12.1b)

Taking two time derivatives of Eq. (12.1a) gives

Rxc D Rx C ` R� cos � � ` P�2 sin � (12.2)

Therefore, summing the forces of the pendulum in the horizontal direction, i1, gives

N D m Rx Cm` R� cos � �m` P�2 sin � (12.3)

Summing the forces of the cart in the horizontal direction gives

M Rx C c Px CN D u (12.4)

Substituting Eq. (12.3) into Eq. (12.4) gives

.M Cm/ Rx C c Px Cm` R� cos � �m` P�2 sin � D u (12.5)

Taking two time derivatives of Eq. (12.1b) gives

Ryc D �.` R� sin � C ` P�2 cos �/ (12.6)
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Summing the forces of the pendulum in the vertical direction, i2, gives

P D mg �m` R� sin � �m` P�2 cos � (12.7)

For the pendulum, summing the moments around its center of gravity gives the
following rotational dynamic equations:

J R� D .m`2=3/ R� D P` sin � �N` cos � (12.8)

Substituting Eqs. (12.3) and (12.7) into Eq. (12.8), and simplifying yields

.4`=3/ R� D g sin � � Rx cos � (12.9)

Equations (12.5) and (12.9) provide the governing equations of motion.
We now linearize the governing equations about the vertical point, where � D 0.

The first-order approximations are given by cos � � 1, sin � � � , and P�2 � 0. Then
the linearized governing equations become

.4`=3/ R� D g� � Rx (12.10a)

.M Cm/ Rx C c Px Cm` R� D u (12.10b)

Solving Eq. (12.10a) for R� and substituting the resultant into Eq. (12.10b) leads to

Rx D � c

M 0 Px �
3mg

4M 0 � C
1

M 0 u (12.11)

where

M 0 �M Cm=4 (12.12)

Substituting Eq. (12.11) into Eq. (12.10a) then leads to

R� D 3.M Cm/g
4M 0`

� C 3c

4M 0`
Px � 3

4M 0`
u (12.13)

We now define the following state vector:

x D �x � Px P��T (12.14)
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Taking the time derivative of Eq. (12.14), and using Eqs. (12.11) and (12.13) gives

Px D

2
666664

0 0 1 0

0 0 0 1

0 �3mg
4M 0 � c

M 0 0

0
3.M Cm/g
4M 0`

3c

4M 0`
0

3
777775

xC

2
666664

0

0
1

M 0
� 3

4M 0`

3
777775

u (12.15a)

y D
�
1 0 0 0

0 1 0 0

�
xC

�
0

0

�
u (12.15b)

where the outputs, given in the vector y, are assumed to be x and � .

12.1.2 State and Observation Models

Modeling is an important aspect for the analysis of system behavior and for the
design of control and estimation algorithms. A model may either be static or
dynamic. A static model’s output at any given time only depends on the input at
that time [19]. A dynamic model’s present output depends on past inputs. Dynamic
models frequently use differential or difference equations to describe physical
systems. Both static and dynamic models can either be derived using a theoretical
analysis or be identified using experimental data. Theoretical models help to provide
a user with insight to any aspect which is modeled, but may not accurately represent
the actual physical process. The major advantage of theoretical models is that the
actual system need not be implemented to develop a model. Identified models
usually describe actual physical processes more accurately, but may not provide
all the information to describe all the desired aspects of the system. Choosing
between a theoretical model or an identified model depends on a number of factors;
including, the availability of obtaining experimental data, the desired accuracy of
the model, the complexity of the physical system, etc.

12.1.2.1 State Models

An important quantity for modern modeling design and analysis is the state vector,
such as the one given by Eq. (12.14). The components of a state vector are known
as state variables. These variables describe a system’s condition, and are directly
related to the dissipation and storage of energy. The number of state variables
is known as the order of the system, which describes how many energy storing
elements are present in the system. The consequence of the order leads directly
to the number of first-order differential or difference equations in the model.
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An nth-order system can be written using n first-order equations (known as state
equations), which are mathematically described in differential form by

Px.t/ D f.x.t/;u.t/; t/; x.t0/ D x0 (12.16)

where f is an n�1 vector that is sufficiently differentiable, x is an n�1 state vector,
and u is a q�1 vector that denotes an exogenous input representing any input to the
system that does not depend on the state elements. An autonomous system is one
that does not depend on time explicitly, so that Px.t/ D f.t/.x.t/;u.t//.

Equation (12.16) describes the general structure of a dynamic model. A subset of
this general structure is a class of systems known as linear systems. A linear system
follows the superposition principle [3], which states that a linear combination of
inputs produces an output that is a linear combination of the outputs that would be
produced if each input was applied separately [19]. Mathematically, this principle is
described by

y D f .z/ D f .˛1z1 C ˛2z2/ D ˛1f .z1/C ˛2f .z2/ (12.17)

where ˛1 and ˛2 are arbitrary constants, and z1 and z2 are arbitrary inputs. It is easy
to show that the following system is linear:

Px.t/ D F.t/x.t/C B.t/u.t/; x.t0/ D x0 (12.18)

where the n� n matrix F and the n� q matrix B are known as the state matrix and
input matrix, respectively. Equation (12.15a) shows the F and B matrices for the
inverted pendulum system. The solution to Eq. (12.18) is given by

x.t/ D ˚.t; t0/x0 C
Z t

t0

˚.t; �/B.�/u.�/ d� (12.19)

where ˚.t; t0/ is known as the state transition matrix, which has the following
properties:

˚.t0; t0/ D I (12.20a)

˚.t0; t/ D ˚�1.t; t0/ (12.20b)

˚.t2; t0/ D ˚.t2; t1/˚.t1; t0/ (12.20c)

P̊ .t; t0/ D F.t/˚.t; t0/ (12.20d)

Note that Eq. (12.20a) gives x.t0/ D x0, which satisfies the initial condition given
in Eq. (12.18). Differentiating Eq. (12.19) and using the properties in Eq. (12.20)
shows that it is indeed the solution for Eq. (12.18):
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Px.t/ D P̊ .t; t0/x0 C ˚.t; t/B.t/u.t/C F.t/
Z t

t0

˚.t; �/B.�/u.�/ d�

D F.t/
�
˚.t; t0/x0 C

Z t

t0

˚.t; �/B.�/u.�/ d�
�
C B.t/u.t/

D F.t/x.t/C B.t/u.t/ (12.21)

Note that since x.t/ is the linear sum of a part due to the initial condition and a part
due to the forcing input, it must follow the superposition principle.

Consider a simple single-input-single-output (SISO) nth-order linear and
autonomous ordinary differential equation (ODE), given by

dny

dtn
C an�1

dn�1y
dtn�1 C � � � C a1

dy

dt
C a0 y D u (12.22)

where y is the output variable and u is the input variable. In order to convert the
ODE into first-order form, consider the following variable change:

x1 D y

x2 D dy

dt

:::

xn D dn�1y
dtn�1

(12.23)

This leads to the following equivalent system of n first-order equations:

Px1 D x2
Px2 D x3
:::

Pxn D �a0x1 � a1x2 � � � � � an�1xn C u

(12.24)

which can be represented in matrix form by

Px D F xC Bu (12.25)

where the vector x contains the state variables

x D �x1 x2 � � � xn
�T

(12.26)
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and the matrices F and B are given by

F D

2
666664

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � 1

�a0 �a1 �a2 � � � �an�1

3
777775

(12.27a)

B D �0 0 � � � 1�T (12.27b)

If the linear system is autonomous, then the solution given by Eq. (12.19) simpli-
fies to

x D eF.t�t0/x0 C
Z t

t0

eF.t��/Bu.�/ d� (12.28)

where eF.t�t0/ is the matrix exponential.
A linear model can also be used to describe an autonomous nonlinear model. This

is accomplished by performing a linearization about an equilibrium state vector and
input, so that

0 D f.xe;ue/ (12.29)

where xe and ue denote the known equilibrium quantities. Next, a multivariable
Taylor series expansion about and xe and ue is performed, keeping only the first-
order terms, so that

Px � f.xe;ue/C @f
@x

ˇ̌
ˇ̌
xe

.x � xe/C @f
@u

ˇ̌
ˇ̌
ue

.u � ue/ (12.30)

Now, the following linearized state and input vectors are defined as

�x D x � xe (12.31a)

�u D u � ue (12.31b)

Therefore, a linearized model of an autonomous nonlinear system is given by

�Px D F�xC B�u (12.32)

where

F � @f
@x

ˇ̌
ˇ̌
xe

(12.33a)

B � @f
@u

ˇ̌
ˇ̌
ue

(12.33b)
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This model can now be used to describe and analyze the characteristics of the
nonlinear system using linear tools, such as superposition, linear stability, etc.

Choosing state variables usually depends on the complexity of the system.
A complex system such as a spacecraft potentially has an extremely large number
of state variables, such as orbital elements, kinematic elements, rotational dynamic
elements, flexible dynamic elements, thermal effects, disturbance model elements,
etc. Often, state variables do not themselves represent physical quantities, but
are needed to form a relationship to physical quantities. Implementing all state
variables into a full model can be a formidable task. Ideally, one chooses the
least number of state variables to represent the characteristics of sought physical
quantities. For example, for attitude estimation using rate-integrating gyros the
state vector may only contain the attitude elements and gyro biases. Other effects,
such as flexible dynamic effects, may often be neglected in the attitude estimation,
or may not be required for on-orbit implementation. It is important to note that
although this simple example describes the least number of state variables for
attitude estimation, other state variables in other models may have already been
used before or concurrently with the attitude estimator. For example, orbital element
states may be required in the attitude estimator whenever the sensor supplying the
data produces an observation which depends on spacecraft position in the orbit.
An example of this scenario is a magnetometer-based attitude estimator, which
requires knowledge of the orbital position state vector in order to develop the
reference magnetic field vector. Therefore, other state variables can indirectly affect
the state quantities used in the primary model.

12.1.2.2 Observation Models

State vectors are used to model the dynamic motion of a particular system.
Observation vectors are used to show how a sensor relates to various state
quantities. Observations are developed from sensor output quantities. The number
of elements in an observation vector is usually determined by both the number of
available sensors and the number of individual sensor quantities (e.g. a three-axis
magnetometer provides observations of three quantities). The general form of an
observation vector is given by

y.t/ D h.x.t/;u.t/; t/ (12.34)

where h is a p � 1 observation vector. This vector shows how each sensor is related
to input and state quantities. The dimension of the observation vector (p) may be
smaller or larger than the dimension of the state vector (n). As seen from Eq. (12.34),
the observation vector may also be a function of the input u (it must always be a
function of the state vector).

Linear observation models follow the same structure as linear state models. The
standard form for the linear observation model is given by

y.t/ D H.t/x.t/CD.t/u.t/ (12.35)
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whereH is the p � n observation matrix (also referred to as the output or sensitivity
matrix) and D is the p � q direct transmission matrix. Equation (12.15b) shows the
H and D matrices for the inverted pendulum system.

The general SISO nth-order linear and autonomous ODE is given by

dny

dtn
C an�1

dn�1y
dtn�1 C � � � C a1

dy

dt
C a0 y

D bn d
nu

dtn
C bn�1

dn�1u
dtn�1 C � � � C b1

du

dt
C b0 u (12.36)

In order to convert the ODE into first-order form we first rewrite Eq. (12.36) into an
equivalent form involving two ODEs, given by

y D bn d
nx

dtn
C bn�1

dn�1x
dtn�1 C � � � C b1

dx

dt
C b0 x (12.37a)

u D dnx

dtn
C an�1

dn�1x
dtn�1 C � � � C a1

dx

dt
C a0 x (12.37b)

where x is an intermediate variable. Now, consider the following variable change:

x1 D x

x2 D dx

dt

:::

xn D dn�1x
dtn�1

(12.38)

This leads to the following equivalent system of n first-order equations, given in
matrix form by

Px D F xC Bu (12.39a)

y D HxCDu (12.39b)

where the matrices F and B are given by Eq. (12.27), and H and D are given by

H D �.b0 � bn a0/ .b1 � bn a1/ � � � .bn�1 � bn an�1/
�

(12.40a)

D D bn (12.40b)

Clearly, if b0 D 1 and the remaining coefficients bi D 0; i D 1; 2; : : : ; n, then the
intermediate variable x D y, which reduces the general case in Eq. (12.36) to the
simple case in Eq. (12.22).
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The transfer function for autonomous linear systems can be found by by taking
the Laplace transform [12] of both sides of Eqs. (12.18) and (12.35) with zero initial
conditions:

sX.s/ D F X.s/C B U.s/ (12.41a)

Y.s/ D H X.s/CDU.s/ (12.41b)

where s is the Laplace variable. Solving for X.s/ in Eq. (12.41a) and substituting
the resulting expression into Eq. (12.41b) yields

Y.s/ D
h
H .sI � F /�1 B CD

i
U.s/ (12.42)

Since the inverse of .sI � F / is given by its adjoint divided by its determinant,
then the determinant of .sI � F / gives the poles of the transfer function. Also,
the eigenvalues of F are equivalent to the roots of the denominator of the transfer
function. All of the eigenvalues must lie left of the imaginary axis, i.e. in the left-
hand plane, for a stable response. Even if one eigenvalue lies to the right of the
imaginary axis then the system is unstable.

Linearized observation models can also be developed, similar in fashion to the
linearized state equations. This is accomplished by

H � @h
@x

ˇ̌
ˇ̌
xe

(12.43a)

D � @h
@u

ˇ̌
ˇ̌
ue

(12.43b)

which are again evaluated at the equilibrium conditions.

12.1.3 Discrete-Time Systems

All of the concepts shown previously extend to discrete-time systems. Discrete-
time systems have now become standard in most dynamic applications with the
advent of digital computers, which are used to process sampled-data systems for
estimation and control purposes. The mechanism that acts on the sensor output and
supplies numbers to the digital computer is the analog-to-digital (A/D) converter.
Then, the numbers are processed through numerical subroutines and sent to the
dynamic system input through the digital-to-analog (D/A) converter. This allows
the use of software driven systems to accommodate the estimation/control aspect of
a dynamic system, which can be modified simply by uploading new subroutines to
the computer.
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Fig. 12.2 Continuous signal
and sampled zero-order hold

We shall only consider the most common sampled-type system given by a “zero-
order hold” which holds the sampled point to a constant value throughout the
interval. Figure 12.2 shows a sampled signal using a zero-order hold. Obviously,
as the sample interval decreases the sampled signal more closely approximates
the continuous signal. Consider the case where time is set to the first sample
interval, denoted by�t , and F andB are constants in Eq. (12.18). Then, Eq. (12.28)
reduces to

x.�t/ D eF�tx.0/C
�Z �t

0

eF.�t��/ d�
�
B u.0/ (12.44)

The integral can be simplified by defining � D �t � � , which leads to

Z �t

0

eF.�t��/ d� D �
Z 0

�t

eF � d� D
Z �t

0

eF � d� (12.45)

Therefore, Eq. (12.44) becomes

x.�t/ D ˚ x.0/C � u.0/ (12.46)

where

˚ � eF�t (12.47a)

� �
�Z �t

0

eF t dt

�
B (12.47b)

Expanding Eq. (12.46) for k C 1 samples gives

xŒ.k C 1/�t� D ˚x.k �t/C � u.k �t/ (12.48)
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It is common convention to change the notation of Eq. (12.48) so that the entire
discrete state-space representation is given by

xkC1 D ˚xk C � uk (12.49a)

yk D Hxk CDuk (12.49b)

Notice that the output system matrices H and D are unaffected by the conversion
to a discrete-time system. The system can be shown to be stable if all eigenvalues
of ˚ lie within the unit circle [7].

Example 12.1. In this example we will perform a conversion from the continuous-
time domain to the discrete-time domain for a second-order system, given by

F D
��1 0
1 0

�
; B D

�
1

0

�

To compute ˚ we will enlist the help of Laplace transforms, with

˚ D eF�t D ˚
L �1ŒsI � F ��1�ˇ̌

�t
D

8̂
ˆ̂<
ˆ̂̂:

L �1

2
6664

1

s C 1 0

1

s.s C 1/
1

s

3
7775

9>>>=
>>>;

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
�t

D
�
e��t 0

1 � e��t 1

�

where L �1 denotes the inverse Laplace transform. The matrix � is computed using
Eq. (12.47b):

� D
Z �t

0

�
e�t

1 � e�t
�
dt D

�
1 � e��t

�t C e��t � 1
�

If the sampling interval is chosen to be �t D 0:1 s, then ˚ and � become

˚ D
�
0:9048 0

0:0952 1

�
; � D

�
0:0952

0:0048

�

Determining analytical expressions for ˚ and � can be tedious and difficult for
large-order systems. Fortunately, several numerical approaches exist for computing
these matrices [18]. A computationally efficient and accurate approach involves a
series expansion:

˚ D I C F�t C 1

2Š
F 2�t2 C 1

3Š
F 3�t3 C � � � (12.50)
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and the matrix � is obtained from integration of Eq. (12.50):

� D
�
I�t C 1

2Š
F�t2 C 1

3Š
F 2�t3 C � � �

�
B (12.51)

Adequate results can be obtained in most cases using only a few of the terms in the
series expansion. For the matrices in Example 12.1, using three terms in the series
expansion yields

˚ D
�
0:9048 0

0:0952 1

�
; � D

�
0:0952

0:0048

�
(12.52)

The series results for ˚ and � are accurate to within four significant digits. Results
vary with sampling interval. As a general rule of thumb, if the sampling interval is
below Nyquist’s upper limit, then three to four terms in the series expansion gives
accurate results [20].

12.2 Control Theory

In this section control theory is reviewed. First, the fundamentals of basic linear
control are introduced. A single axis attitude control system design is shown next to
highlight the various aspects of linear control. Then, stability of nonlinear systems is
discussed. Finally, a popular nonlinear controller law, called sliding-mode control,
is reviewed.

12.2.1 Basic Linear Control Design

A fundamental block diagram of a SISO negative feedback control system is shown
in Fig. 12.3, where R.s/ is the reference, Y.s/ is the output signal, D.s/ is the
disturbance, U.s/ is the control input, Gp.s/ is the plant to be controlled, Gc.s/
is the controller, and H.s/ is the sensor dynamics. The disturbance is added to
the control input because for spacecraft the disturbance is an external torque that
“turns” it just as a control input does. This is similar to a current-controlled motor
system [5]. Assuming the disturbance is zero, the transfer function between the
output and reference is given by

Y.s/

R.s/
D Gc.s/Gp.s/

1CGc.s/Gp.s/H.s/ (12.53)

The denominator of Eq. (12.53) is known as the characteristic equation whose roots
define the type of response. All roots of the associated polynomial must be to the
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Fig. 12.3 Control block diagram

left of the imaginary axis to insure that the closed-loop system is asymptotically
stable. Clearly, the poles of the open-loop system, Gc.s/Gp.s/H.s/, can now
be manipulated by the controller, Gc.s/, to either stabilize an unstable plant or
obtain some desired characteristics in the closed-loop system. The sensor dynamics
can also affect the closed-loop response, although for most cases this is not a
destabilizing issue. Assuming the reference is zero, the transfer function between
the output and disturbance is given by

Y.s/

D.s/
D Gp.s/

1CGc.s/Gp.s/H.s/ (12.54)

Note that the denominators of Eqs. (12.53) and (12.54) are equivalent, which means
that the stability dynamics are the same for the reference and disturbance closed-
loop responses. The numerators are different which means that the actual output
responses to a reference input and a disturbance input are different. The total
response is given by the sum of the two transfer functions.

12.2.1.1 Single Axis Attitude Control

In this section a simple single axis attitude control system is designed. For this case
Euler’s rotational equations of motion reduce down to simply

J R� D u (12.55)

where J is the inertia, � is the angle, and u is the applied torque. The open-loop
transfer function is given by

�.s/

U.s/
D 1

J s2
(12.56)
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Clearly this system is unstable since it has a double pole at the origin. Several
different types of controllers can be designed to stabilize this system. Here we
focus on a “proportional-integral-derivative” (PID) controller. We first will attempt a
simple proportional controller, where the error signal, E.s/, is multiplied simply by
a scalar gain, kp . Assuming that H.s/ D 1 the closed-loop dynamics in Eq. (12.53)
are given by

Y.s/

U.s/
D kp

J s2 C kp (12.57)

Clearly, using only proportional control results in a closed-loop system that yields a
sinusoidal response and thus the response is not asymptotically stable.

We now will attempt a PD controller, with Gc.s/ D kp C kd s, where kd is the
scalar gain associated with the derivative portion of the controller. The closed-loop
system now becomes

Y.s/

U.s/
D kp C kd s
J s2 C kd s C kp (12.58)

Now the closed-loop dynamics can be made stable. The characteristic equation can
be written in the familiar form of s2 C 2 � !n s C !2n, where � is the damping ratio
and !n is the natural frequency, which is the frequency of the sinusoidal response
for the undamped response. From Eq. (12.58) we have !n D

p
kp=J and � D

kd=.2
p
J kp/. Four types of responses can be given for various values of �:

• � < 0. This results in an unstable system.
• � D 0. This is the undamped response which yields a pure sinusoidal closed-

loop response with frequency given by !n. The undamped response is given by
y.t/ D A sin.!nt/CB cos.!nt/, where A and B are constants determined from
the initial conditions.

• 0 < � < 1. This results in exponentially decaying sinusoidal, known as the
under-damped response, with frequency !d D !n

p
1 � �2, called the damped

natural frequency. The response is given by y.t/ D e��!nt ŒA sin.!d t/ C
B cos.!d t/�, where A and B are constants determined from the initial condi-
tions. Figure 12.4 gives plots for various values of �. Clearly, the oscillations
damp out faster as � increases.

• � D 1. This gives a critically damped response that converges as fast as possible
without oscillating. The roots of the characteristic equation are repeated for this
case with s1; 2 D �!n. The response is given by y.t/ D .AC B t/e��!nt , where
A and B are constants determined from the initial conditions. Note that the term
t grows with time, but the overall system is still stable because the exponential
“decays” the response faster than the t “grows” the response.

• � > 1. This gives an over-damped response since all the roots, denoted by s1 and
s2, are real and negative. The response is given by y.t/ D Aes1t CB es2t , where
A and B are constants determined from the initial conditions.
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Fig. 12.4 Response for various damping ratio values

The single-axis PD control design explains a fundamental concept for basic
spacecraft design. That is, spacecraft attitude control must incorporate derivative
feedback in order to achieve an asymptotically stable response. This derivative
information is achieved either through gyros or by taking a finite difference of
the attitude. For the latter case, Eq. (3.174) can be used to determine the angular
velocity. However, it is important to note that employing a finite difference amplifies
noise since higher frequencies are amplified. This is clearly seen by the fact
that a magnitude plot of s shows a 20 decibel per decade increase. Typically, a
low-pass filter is employed to filter the noise. This approach works well when
loose attitude and jitter requirements are given. Some researchers imply that
spacecraft can be controlled without angular velocity measurements [14]. However,
a derivative is always given in these works, which must be derived from a finite
difference approach in practice. For tight pointing and/or jitter requirements the
finite difference approach will typically not meet the requirements and high quality
gyros must be employed.

From Eq. (12.58) it can be seen that a unit step input will result in a unit response
as t !1. Thus zero steady-state error is achieved which results in perfect tracking.
The closed-loop disturbance response is given by

Y.s/

D.s/
D 1

J s2 C kd s C kp (12.59)

From the final value theorem [5] the steady-state response for a unit disturbance
input is given by 1=kp . Ideally we want the steady-state disturbance response to
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be zero. We employ a full PID controller with Gc.s/ D kp C kd s C ki=s, where
ki is the integral gain, to make this happen. The closed-loop disturbance response is
now given by

Y.s/

D.s/
D s

J s3 C kd s2 C kp s C ki (12.60)

From the final value theorem the disturbance response at steady-state is now zero.
However, one needs to be careful. From Eq. (12.59) a stable response is given when
the PD gains are positive. However, the addition of integral control can actually
destabilize the system. We show this by example. We set J D kp D kd D 1

and vary ki from 0 to 2. A plot of the root locations, also known as a root locus
plot, for varying ki is shown in Fig. 12.5. When ki D 0 the roots are given by
0 and �1=2 ˙ p3=2 j . As ki increases the two complex poles move towards the
imaginary axis and cross it when ki > 1. While the 0 pole moves further down the
left-hand plane’s real axis, any integral gain that is greater than 1 causes the closed-
loop system to become unstable. This is a typical characteristic of integral control
and the reason why care must be taken when it is employed in a control design.
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12.2.2 Stability of Nonlinear Dynamic Systems

We now consider the circumstance in which the original system of differential
equations is nonlinear and can be brought to the standard form

Px D f.x/ (12.61)

Some of the nonlinear systems of differential equations encountered in applications
can be solved for an exact analytical solution. Unfortunately, only a minority of
these systems have known analytical solutions and no standardized methods exist
for finding exact analytical solutions.

Stability for nonlinear systems is much more difficult to prove. Fortunately,
Lyapunov methods can be applied to show stability for both nonlinear and linear
systems. Two methods for stability were introduced by Lyapunov. The first is given
by Lyapunov’s linearization method. Before proceeding with this method we must
first define an equilibrium point, denoted by xe . An equilibrium is defined as a
point where the system states remain indefinitely, so that Px.t/ D 0 for all t .
For linear systems there is usually only one equilibrium point given at xe D 0,
although there are exceptions. In Lyapunov’s linearization method each equilibrium
point is considered and evaluated in a linearized model. The equilibrium point
is said to be Lyapunov stable if we can select a bound on initial conditions that
results in trajectories that remain with a chosen finite limit. Furthermore, the
equilibrium point is asymptotically stable if the linearized state also approaches
zero as time approaches infinity. Denoting F as the Jacobian of f.x/ evaluated at
the equilibrium point, Lyapunov’s linearization method gives the following stability
conditions [25]:

• The equilibrium point is asymptotically stable for the actual nonlinear system if
the linearized system is strictly stable, with all eigenvalues of F strictly in the
left-hand plane.

• The equilibrium point is unstable for the actual nonlinear system if the linearized
system is strictly unstable, with at least one eigenvalue strictly on the right-hand
plane.

• Nothing can be concluded if the linearized system is marginally stable, with at
least one eigenvalue of F on the imaginary axis and the remainder in the left-
hand plane (the equilibrium point may be stable or unstable for the nonlinear
system).

Lyapunov’s linearization method provides a powerful approach to help qualify the
stability of a system if a control (or estimation) scheme is designed to remain within
a linear region, but does not give a thorough understanding of the nonlinear system
in many cases.

Lyapunov’s direct method gives a global stability condition for the general
nonlinear system. This concept is closely related to the energy of a system, which
is a scalar function. The scalar function must in general be continuous and have
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continuous derivatives with respect to all components of the state vector. Lyapunov
showed that if the total energy of a system is dissipated, then the state is confined to a
volume bounded by a surface of constant energy, so that the system must eventually
settle to an equilibrium point. This concept is valid for both linear and nonlinear
systems. Lyapunov stability is given if a chosen scalar function V.x/ satisfies the
following conditions:

• V.xe/ D 0
• V.x/ > 0 for x ¤ xe
• PV .x/ � 0
If these conditions are met, then V.x/ is a Lyapunov function. Furthermore, if
PV .x/ < 0 for x ¤ xe , then the equilibrium point, xe , is asymptotically stable.

For the case when the condition PV .x/ � 0 can only be shown, LaSalle’s theorem
[28] allows us to prove asymptotic stability. We first define an invariant set, as given
in [25]: A set G is an invariant set for a dynamic system if every system trajectory
which starts from a point G remains in G for all future time. Now assume that
PV .x/ � 0 is true over the entire state space and that V.x/ ! 1 as kxk ! 1. Let
R be the set of all points PV .x/ D 0 andM be the largest invariant set inR. LaSalle’s
theorem states that all solutions globally asymptomatically converge to M as time
approaches infinity. More details on Lyapunov methods for stability can be found
in [25].

Example 12.2. Consider the following spring-mass-damper system with nonlinear
spring and damper components:

m Rx C c Pxj Pxj C k1x C k2x3 D 0
where m, c, k1, and k2 have positive values. The system can be represented in first-

order form by defining the following state vector x D �x Px�T :

Px1 D x2
Px2 D �.k1=m/x1 � .k2=m/x31 � .c=m/x2jx2j

The system has only one equilibrium point at x D �
0 0
�T

that is physically correct
(the others are complex). We wish to investigate the stability of this nonlinear system
using Lyapunov’s direct method. Intuitively, we choose a candidate Lyapunov
function that is given by the total mechanical energy of the system, which is the
sum of its kinetic and potential energies:

V.x/ D 1

2
m Px2 C

Z x

0

.k1x C k2x3/ dx

Evaluating this integral yields

V.x/ D 1

2
m Px2 C 1

2
k1x

2 C 1

4
k2x

4
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Note that zero energy corresponds to the equilibrium point (x D 0), which satisfies
the first condition for a valid Lyapunov function. Also, the second condition, V.x/ >
0 for x ¤ 0, is clearly satisfied. Taking the time derivative of V.x/ gives

PV .x/ D m Rx Px C .k1x C k2x3/ Px
Solving the original system equation for m Rx, and substituting the resulting expres-
sion into the equation for PV .x/ yields

PV .x/ D �cj Pxj3

Clearly, PV .x/ � 0 for all nonzero values of Px. Therefore, V.x/ is a Lyapunov
function and shows that the system is stable. But PV .x/ does not depend on x.
To prove asymptotic stability we consider the set R, which consists of x such
that x2 D 0 and x1 is anything. Suppose x.t/ is a trajectory starting in R. Then
Px1 D x2 D 0, which implies that x1.t/ is constant. But if this constant is not
zero, then Px2 is not necessarily zero and so x2 will become nonzero. Therefore, any
initial point in R must leave R. Since R is not attracting, then LaSalle’s theorem
implies the origin is asymptotically stable. This example shows how an “energy-
like” function can be used to find a Lyapunov function, since the energy of this
system is dissipated by the damper until the mass settles down.

Lyapunov’s global method can be shown to be valid for linear autonomous
systems with Px D F x. Consider the function V.x/ D xT P x, where P is a positive
definite symmetric matrix. Clearly, V.x/ > 0 for all x ¤ 0. The time derivative of
V.x/ is given by

PV .x/ D PxT P xC xT P Px D xT .F T P C PF /x (12.62)

Next, define the following matrix Lyapunov equation:

F TP C PF D �Q (12.63)

If Q is strictly positive definite then the system is asymptotically stable. Lyapunov
showed that this condition is true if and only if all eigenvalues of F are strictly in
the left-hand plane. See [4] for the proof.

12.2.3 Sliding-Mode Control1

In this section a popular control approach, called sliding-mode control, for nonlinear
systems is briefly reviewed. More details can be found in [25]. Sliding-mode
control is also referred to as variable structure control because the structure of the

1The authors would like to thank Agamemnon L. Crassidis for many of the contributions in this
section.
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Fig. 12.6 Phase portrait

control law varies, i.e. switches, based on the position of the state trajectory. Before
introducing the actual sliding control approach the basic concepts of switching
theory must first be introduced. A candidate Lypaunov function is first chosen so
that the system’s state trajectories in the phase plane remain stable and point toward
the origin. The switching law forces the state trajectories onto a surface in the phase
plane, which is called the sliding surface or switching surface. The control law
switches between two sets of control laws depending if the states are above or below
the surface. Once the state trajectories reach the sliding surface, referred to as the
reaching phase, the discontinuous controller forces the states to slide towards the
origin, referred to as the sliding phase. A phase portrait showing these two phases
for the system used in Example 12.3 is shown in Fig. 12.6.

We begin our introduction to sliding-mode control by considering the following
second-order system:

Rx D f .x; Px/C u (12.64)

where f .x; Px/may be a linear or nonlinear function. Let xc be the desired state and
�x D x � xc . The sliding surface, denoted by s, for a second-order system can be
mathematically described by the following:

s D � Px C 	�x (12.65)

for some scalar 	. Consider the following candidate Lyapunov function:

V.�x/ D 1

2
s2 (12.66)
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The time derivative is given by

PV .�x/ D s Ps (12.67)

A control law can now be found based on Eq. (12.67) that ensures that the state
trajectories will be asymptotically stable. In order for the state trajectories to remain
on the surface, motion off the surface is prevented by setting Ps D 0, which is referred
to as a sliding mode.

This can be extended to higher-order systems by defining the following tracker
error vector [25]:

�x D x � xc D
�
�x � Px � � � �x.n�1/�T (12.68)

where n is the order of the system. The sliding surface is given by

s D
�
d

dt
C 	

�
�x (12.69)

For example, when n D 3 we have s D � Rx C 2 	� Px C 	2� Px.
Sliding-mode control essentially reduces the order of the system to a first-order

system by a form of feedback linearization. Direct feedback linearization is attrac-
tive for nonlinear systems since the nonlinear system dynamics are transformed into
a system with linear dynamics. Typically, however, the dynamics of the system
are not known exactly. This may lead to severe tracking errors when a direct
feedback linearization control law is implemented on an actual system. In other
words, robustness in the presence of parametric and un-modeled uncertainties
cannot be ensured. Sliding-mode control solves the shortcomings and limitations
of direct feedback linearization by forcing the state trajectories to track desired
state trajectories in the phase portrait. Stability is ensured by Lyapunov’s direct
method and forms the basis for deriving the control law. As an example consider
the following assumed second-order system:

Rx D Nf .x; Px/C u (12.70)

where the assumed model Nf .x; Px/ will be used to develop the control law. Taking
the derivative of s in Eq. (12.65) and substituting Rx D Nf .x; Px/C u gives

Ps D Rx � Rxc C 	� Px
D Nf .x; Px/C u � Rxc C 	� Px (12.71)

Using the condition Ps D 0 from Eq. (12.67) leads to the following control law:

ue D � Nf .x; Px/C Rxc � 	� Px (12.72)
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where ue is interpreted as the “best” estimate of the equivalent control [25]. In order
to account for model uncertainties a discontinuous term is added across the sliding
surface:

u D ue � k sign.s/ (12.73)

for some scalar k. Substituting this control law into Eq. (12.71) and then substituting
the resultant into Eq. (12.67) yields

PV .�x/ D �f .x; Px/ � Nf .x; Px/ � k sign.s/
�
s

D �f .x; Px/ � Nf .x; Px/� s � k jsj (12.74)

Let us assume that the model error on f .x; Px/ can be bounded by some known
function F.x; Px/, so that

jf .x; Px/ � Nf .x; Px/j � F.x; Px/ (12.75)

Let the maximum value of F.x; Px/ be denoted by Fmax. Then setting k D FmaxC �
for some positive scalar � gives PV .�x/ � ��jsj.

The resulting sliding-mode control law provides stability in the face of modeling
uncertainties if k is chosen to be large enough, but it is important to note that as
k increases the control discontinuity also increases. The control switching law will
cause the closed-loop system to “chatter” due to the discontinuous term, which is
undesirable for most applications. The chattering can be eliminated by smoothing
the control signal in a thin boundary layer. To accomplish this task the signum
function is replaced with a saturation function with a varying boundary layer
thickness. The applied sliding-mode control is now given by

u D ue � k sat.s; 
/ (12.76)

where 
 is the boundary layer thickness and

sat.s; 
/ �

8̂
<̂
ˆ̂:

1 for s > 


s=
 for jsj � 

�1 for s < �


(12.77)

The tracking performance is suboptimal using the saturation function, compared to
using the signum function, but this provides a good tradeoff between robustness and
practical implementation for a smoothed control input. The extension of sliding-
mode control to multiple inputs is given in [25]. Other properties of this control
approach can also be found in this reference.
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Example 12.3. In this example the nonlinear system shown in Example 12.2 is
controlled to a desired trajectory. The system with a control input is given by

m Rx C c Pxj Pxj C k1x C k2x3 D u

where m, c, k1, and k2 have positive values. The system can be represented in first-

order form by defining the following state vector x D �x Px�T :

Px1 D x2
Px2 D �.k1=m/x1 � .k2=m/x31 � .c=m/x2jx2j C u

The desired trajectories are simulated using the model parameters: m D 1, c D 2,
k1 D 1, and k2 D 0:5with u D 0 for all time and an initial condition of x0 D Œ1 0�T .
A time interval of 0.01 s is used for the integration process with a final time of 50 s.

The sliding-mode control law assumes the model parameters: Nm D 1, Nc D 3,
Nk1 D 1:5, and Nk2 D 0:75. The control parameters are given by 	 D 3 and k D 1.
The boundary layer thickness when the saturation function is used in the control
law is given by 
 D 1. The assumed initial condition is given by zero for both
states. Simulation results using the signum and saturation functions are shown in
Fig. 12.7. Comparing Fig. 12.7a and c shows that using the signum function drives
the position error to zero faster than using the saturation function. But comparing
Fig. 12.7b and d shows that using the signum function produces the classical
chattering phenomenon for the control input, while the saturation function produces
a much smoother control input.

12.3 Estimation Theory

In this section the basic concepts of estimation theory are reviewed. We begin with a
discussion on the differences between static-based and filter-based estimation. Then,
methods of least squares are presented. Formulations are shown for both batch
and recursive least squares methods involving linear processes. Then, maximum
likelihood estimation is reviewed, including a review of the Cramér-Rao lower
bound. Next, nonlinear least squares is reviewed. An example is shown that involves
estimating the attitude of a spacecraft from body and reference observations.
This is followed by a brief discussion of the advantages and disadvantages of
least squares methods. Then, a review of state estimation methods is provided,
which includes the Kalman filter for linear systems, the extended Kalman filter
for nonlinear systems, and a batch smoothing algorithm. This is followed by a
discussion on the concept of linear covariance analysis. Finally, the separation
theorem is reviewed.
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Fig. 12.7 Sliding-mode simulation results. (a) Position error—signum function. (b) Control
input—signum function. (c) Position error—saturation function. (d) Control input—saturation
function

12.3.1 Static-Based and Filter-Based Estimation

Filtering refers to the process of estimating the current state of a system from a
set of measured observations using a priori information, typically given by the
previous time state estimate. The filtering problem involves finding the best estimate
of the true system state using an assumed model and measurements each corrupted
with random noise of known statistics. The variables to be estimated are usually
collected into a state vector, which typically include more variables than just the
attitude. For example, star tracker measurements can be combined with a kinematic
model, which is propagated using gyroscopic measurements. However, all gyros
have inherent drift, which cause inaccuracies in the propagated model. A filter is
used to estimate the attitude and gyro drift, oftentimes referred to as a bias because
over short periods the drift occurs slowly, from the measurements. An important
aspect of filtering approaches is that they can be used to simultaneously estimate
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quantities and filter noisy measurement observations. This is accomplished by
finding the best estimate from a combination of the dynamic model propagation
and the measurement observation, as discussed in the star tracker/gyro example.
The attitude estimate can be shown to be more accurate than using static approaches
alone. Because filtering approaches can (and often do) utilize dynamic models, they
can in theory estimate quantities when the number of to-be-determined quantities is
greater than the number of linearly independent observations at any single time. An
example of a specific filtering approach is the Kalman filter [11], which when used
for attitude estimation can in some cases determine the attitude using one vector
sensor, e.g. a magnetometer-only solution [21].

Static and filtering approaches can be used in a complementary fashion. For
example, a static solution can be used as an initial estimate in the filter, and may also
be used to check the integrity of the filter solution. Another example involves star-
tracker determined attitudes. Modern star trackers have the capability of providing
an attitude-out solution using the vector observations only in the internal processor.
Two or more of these attitude solutions from multiple trackers can be combined
with rate-integrating gyro measurements in a filter to provide a better attitude
estimate than the estimate provided be a single tracker. Therefore, static and filtering
approaches can complement each other in the overall estimate.

Both static and filtering approaches have advantages and disadvantages. The
main advantage of static approaches is that a solution is always provided with at
most a very rough a priori estimate of the desired quantity. Also, these approaches
are usually computationally more efficient than filtering approaches. The main
disadvantage of static approaches is that full observability is required at each
time frame, so that algebraic singularities do not exist in the solution. Also, some
variables cannot be included or determined from a static solution. Finally, optimally
combining determined quantities with the proper statistical balance may be difficult
to do using static approaches.

The main advantage of filtering approaches is that estimates may still be found
even when deterministic methods fail, such as in the algebraic singularity situation.
Also, other variables, such as biases, can be appended into the state estimation
variables, and can easily be combined with other variables with the proper statistical
balance. Another advantage is that filters often provide statistical measures, such as
estimate error covariances, as part of their solutions, while simultaneously filtering
noisy observations. The main disadvantage of filtering approaches is that an a priori
estimate is usually required for the solution. Also, filters may be prone to divergence
problems. Finally, the computational load, coding size, and implementation effort
are usually greater for filtering approaches than with static approaches.

This section provides a review of both static-based and filtering-based estimation
approaches. It is expected that the reader has basic knowledge of probability and
statistics, especially the theory behind expectations of a random variable, Gaussian
distributions and the definition of the covariance matrix. First, an introduction
to the notation used for the estimation concepts throughout the text is shown.
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This is followed by a review of static-based methods, including linear and nonlinear
least squares. Then, filter-based methods, such as the Kalman filter and extended
Kalman filter are reviewed.

The foundation of all estimation algorithms involves taking sensor measurements
to estimate unknown variables. For any variable or parameter in estimation, there
are three quantities of interest: the true value, the measured value, and the estimated
value. The true value (or “truth”) is usually unknown in practice. This represents the
actual value sought of the quantity being approximated by the estimator. In this text
the true value contains the word “true” as a superscript, such as xtrue. Measurements
are never perfect, since they will always contain errors. Thus, measurements are
usually modeled using a function of the true values plus some error. Other quantities
used commonly in estimation are the measurement error (measurement value minus
true value) and the residual error (measurement value minus estimated value). Thus,
for a measurable quantity x, the following two equations hold:

measured value D true value C measurement error
x D xtrue C v

and

measured value D estimated value C residual error
x D Ox C 


The actual measurement error, v, like the true value, is never known in practice.
However, the errors in the mechanism that physically generate this error are usually
approximated by some known process (often by a zero-mean Gaussian noise
process with known variance). These assumed known statistical properties of the
measurement errors are often employed to weight the relative importance of various
measurements used in the estimation scheme. Unlike the measurement error, the
residual error is known explicitly and is easily computed once an estimated value
has been found. The residual error is often used to drive the estimator itself. It should
be evident that both measurement errors and residual errors play important roles in
the theoretical and computational aspects of estimation.

12.3.2 Batch Least Squares Estimation

The principle of batch least squares, developed simultaneously by Karl Gauss
and Adrien-Marie Legendre in the early Nineteenth Century, is used to estimate
the elements of a constant vector from redundant observations. Therefore, least
squares methods are known as “static” estimators. It is important to note that these
methods may still involve dynamic models; however, the elements to be estimated
are always constant. The simplest least squares problem has a linear observation
model, given by

y D Hxtrue C v (12.78)
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where y is anm�1 vector of observations, xtrue is an n�1 vectors of to-be-estimated
variables, H is an m � n constant observation matrix, and v is an m � 1 vector of
measurement noise which is usually represented by a zero-mean Gaussian white-
noise process with covariance

R � EfvvT g (12.79)

where Ef g denotes expectation [4]. Here it is assumed that R is a positive definite
matrix. The optimum estimate for xtrue, denoted by Ox, is found by minimizing a loss
function involving the weighted sum square residual errors, given by

J.Ox/ D 1

2
.y �H Ox/T R�1.y �H Ox/ (12.80)

Minimizing Eq. (12.80) can easily be shown to be equivalent to maximizing the
likelihood function [26], which will be shown later. The best least squares estimate
is obtained by taking the derivative of Eq. (12.80) with respect to Ox and setting
the resultant to zero, which yields

Ox D .HTR�1H/�1HTR�1y (12.81)

A sufficiency test for locating the minimum is found by using the second derivative
of J.Ox/,

@2J.Ox/
@Ox2 D HTR�1H (12.82)

which is an n � n Hessian matrix. It is positive definite when H has rank n, thus
providing a sufficient condition for a minimum. For the simple case of estimating a
scalar variable, it is easy to show that Eq. (12.81) reduces to the average of a number
of observations. Variants to the least squares problem, such as the constrained
problem, can be found in [4].

The structure of Eq. (12.81) can also be used to prove that the estimator is
“unbiased.” An estimator Ox.y/ is said to be an “unbiased estimator” of x if
E fOx.y/g D xtrue for every possible value of xtrue [4].2 If Ox is biased, the difference
E fOx.y/g � xtrue is called the “bias” of Ox. Substituting Eq. (12.78) into Eq. (12.81)
gives

Ox D xtrue C .HTR�1H/�1HTR�1v (12.83)

Taking the expectation of both sides gives E fOxg D xtrue, since v has zero mean.
Therefore, Eq. (12.81) is indeed an unbiased estimate.

2This implies that the estimate is a function of the measurements.
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12.3.3 Sequential Least Squares Estimation

The batch least squares problem can be run as a sequential process. This is
accomplished by adding an observation and deriving a sequential estimate based on
the previous estimate [4]. The sequential estimate follows the following recursion
equation:

OxkC1 D Oxk CKkC1.ykC1 �HkC1 Oxk/ (12.84)

where

KkC1 D PkC1HT
kC1R�1

kC1 (12.85)

P�1
kC1 D P�1

k CHT
kC1R�1

kC1HkC1 (12.86)

The matrix P is known as the estimate error-covariance matrix, which will be
described shortly. Equation (12.84) modifies the previous best correction Oxk by an
additional correction to account for the information contained in the .k C 1/th
measurement subset. Another form for Eq. (12.85) is given by using the matrix
inversion lemma or Sherman-Morrison-Woodbury formula [9]:

.AC U C V /�1 D A�1 � A�1U .C�1 C V A�1U /�1V A�1 (12.87)

This leads to the covariance recursion form, given by

OxkC1 D Oxk CKkC1.ykC1 �HkC1 Oxk/ (12.88)

where

KkC1 D PkHT
kC1

�
HkC1PkHT

kC1 CRkC1
��1

(12.89)

PkC1 D ŒI �KkC1HkC1� Pk (12.90)

An alternative form for the sequential covariance expression involves using the
Joseph form [17], which has been shown to be more numerically stable. This is
given by

PkC1 D ŒI �KkHkC1�PkŒI �KkHkC1�T CKkRkC1KT
k (12.91)

Equation (12.91) requires more computations, but guarantees that the covariance
matrix will remain positive definite.

In sequential least squares, the new estimate is the old estimate plus a linear
correction term involving the residual between a new observation and the value
predicted by the old estimate. Also, if the estimate covariance is “large,” then
more weight is given to the residual. This intuitively makes sense since a large
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covariance implies a large estimate error, so that more reliance should be placed on
the residual than the previous estimate. As the covariance decreases more weight is
placed on the previous estimate, so that the effect of residual correction is less. Thus,
the addition of more observations does not significantly affect the new estimate.

12.3.4 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) was first introduced by R. A. Fisher, a
geneticist and statistician in the 1920s. Maximum likelihood yields estimates for
the unknown quantities which maximize the probability of obtaining the observed
set of data. The conditional probability density function (pdf) for the measurement
model in Eq. (12.78) is simply given by [4]

p.yjxtrue/ D 1

.2/m=2.detR/1=2
exp

�
�1
2
.y �Hxtrue/T R�1.y �Hxtrue/

�

(12.92)
We wish to maximize the conditional pdf to determine an estimate for xtrue, denoted
by Ox. Due to the monotonic aspect of this function, the maximization problem can
be solved by maximizing the natural log of Eq. (12.92), which gives

ln
�
p.yjxtrue/

� D �1
2
.y �Hxtrue/T R�1.y �Hxtrue/ � m

2
ln.2/ � 1

2
ln.detR/

(12.93)

The last two terms on the right hand side of Eq. (12.93) can be ignored because they
do not depend on xtrue. Maximizing Eq. (12.93) leads to

Ox D .HTR�1H/�1HTR�1y (12.94)

which is the familiar least squares batch estimator given by Eq. (12.81). In order
to guarantee that the function is maximized the matrix �.HTR�1H/�1 must be
negative definite. Since R is positive definite, then this condition is true if m � n

and there are at least n independent rows in H .
The likelihood function, `.yjxtrue/, is also a pdf, given by

`.yjxtrue/ D
NY
iD1

p.yi jxtrue/ (12.95)

where N is the total number of density functions (a product of a number of
density functions is also a density function in itself). Note that the distributions
used in Eq. (12.95) are the same, but the measurements belong to a different
sample drawn from the conditional density. The goal of the method of maximum
likelihood is to choose as our estimate of the unknown parameters xtrue that
value for which the probability of obtaining the observations y is maximized.
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Many likelihood functions, such as the Gaussian pdf, contain exponential terms,
which can complicate the mathematics involved in obtaining a solution. However,
as seen previously, since ln Œ`.yjxtrue/� is a monotonic function of `.yjxtrue/, then
maximizing ln Œ`.yjxtrue/� is equivalent to maximizing `.yjxtrue/.3 It follows that for
a maximum we have the following:

necessary condition



@

@xtrue
ln
�
`.yjxtrue/

�� ˇ̌ˇ̌
Ox
D 0n (12.96)

sufficient condition

@2

@xtrue @.xtrue/T
ln
�
`.yjxtrue/

�
must be negative definite (12.97)

Equation (12.96) is often called the likelihood equation.
Maximum likelihood has many desirable properties. The first is the invari-

ance principle, which is stated as follows: Let Ox be the maximum likelihood
estimate of xtrue. Then the maximum likelihood estimate of any function g.xtrue/

of these parameters is the function g.Ox/ of the maximum likelihood estimate.
This is a powerful tool since we do not have to take more partial derivatives to
determine the maximum likelihood estimate! Another property is that maximum
likelihood is an asymptotically efficient estimator. This means that if the sample
size is large, the maximum likelihood estimate is approximately unbiased and has
a variance that approaches the smallest that can be achieved by any estimator.
Finally, the estimation errors in the maximum likelihood estimate can be shown to
be asymptotically Gaussian no matter what density function is used in the likelihood
function. Proofs of these properties can be found in Sorenson [26].

The sufficient condition in Eq. (12.97) is useful to also compute the Cramér-Rao
inequality which gives a lower bound on the expected errors between the estimated
quantities and the values from the known statistical properties of the measurement
errors. The Cramér-Rao inequality for an unbiased estimate Ox, i.e. E fOxg D xtrue, is
given by

P � E
n�Ox � xtrue

	 �Ox � xtrue
	T o � F �1 (12.98)

where the Fisher information matrix, F , is given by

F D �E



@2

@xtrue @.xtrue/T
lnŒp.yjxtrue/�

�
(12.99)

3Also, taking the natural logarithm changes a product to a sum which often simplifies the problem
to be solved.
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The first- and second-order partial derivatives are assumed to exist and to be
absolutely integrable. A formal proof of the Cramér-Rao inequality can be found
in [4]. The Cramér-Rao inequality gives a lower bound on the expected errors. When
the equality in Eq. (12.98) is satisfied, then the estimator is said to be efficient. This
can be useful for the investigation of the quality of a particular estimator. It should
be stressed that the Cramér-Rao inequality gives a lower bound on the expected
errors only for the case of unbiased estimates.

As an example of the Cramér-Rao inequality, consider the least squares estimator
of Eq. (12.94). The Fisher information matrix using Eq. (12.99) is found to be
given by

F D .HTR�1H/ (12.100)

Substituting Eq. (12.78) into Eq. (12.94) gives

Ox � xtrue D .HTR�1H/�1HTR�1v (12.101)

Since Efvg D 0 then clearly the least squares estimate is unbiased. Using
Efv vT g D R leads to the following estimate covariance:

P D .HTR�1H/�1 (12.102)

Therefore, the equality in Eq. (12.98) is satisfied, so the least squares estimate leads
to an efficient estimator. Note that estimate covariance matrix does not depend on
the observations, so that the performance of the estimator can be evaluated before
any measurements are taken. This includes finding the 3� bounds on the estimate
error parameters, even though the truth, xtrue, is never known in practice!

12.3.5 Nonlinear Least Squares

Linear least squares provides a simple and efficient closed-form solution for linear
models. Unfortunately, many systems in spacecraft orbit and attitude estimation
involve nonlinear models. The nonlinear least squares problem is more com-
plicated, since in general closed-form solutions are not possible. Consider the
following nonlinear observation model:

y D h.xtrue/C v (12.103)

where h.xtrue/ represents some nonlinear, continuously differentiable function
of xtrue. Also, it is assumed that the measurement noise is an additive function to the
observation model h.xtrue/. This may not always be true, which further complicates
the problem. The nonlinear least squares problem still minimizes the weighted sum
square residual errors, given by

J.Ox/ D 1

2
Œy � h.Ox/�T R�1Œy � h.Ox/� (12.104)



12.3 Estimation Theory 457

In principle the solution follows exactly as in the linear case, where the derivative
of Eq. (12.104) is set to zero. However, in practice the estimate cannot be found in
closed-form due to the nonlinear nature of the observation vector h.x/. We assume
that an initial estimate of x is known, denoted by xc , so that the estimate is related
by an unknown set of corrections, �x, as

Ox D xc C�x (12.105)

If the components of �x are sufficiently small, it may be possible to solve for
approximations to them and thereby update xc with an improved estimate of x from
Eq. (12.105). With this assumption, we may linearize h.Ox/ about xc using a first-
order Taylor series expansion as

h.Ox/ � h.xc/CH�x (12.106)

where

H � @h
@x

ˇ̌
ˇ̌
xc

(12.107)

The measurement residual “after the correction” can now be linearly approxi-
mated as

�y � y � h.Ox/ � y � h.xc/ �H�x D �yc �H�x (12.108)

where the residual “before the correction” is

�yc � y � h.xc/ (12.109)

Recall that the objective is to minimize the weighted sum squares, J , given
by Eq. (12.104). The local strategy for determining the approximate corrections
(“differential corrections”) in �x is to select the particular corrections that lead to
the minimum sum of squares of the linearly predicted residuals Jp:

J D 1

2
�yT R�1�y � Jp � 1

2
.�yc �H�x/T R�1.�yc �H�x/ (12.110)

Before carrying out the minimization, we note that the minimization of Jp in
Eq. (12.110) is equivalent to the minimization of J in Eq. (12.104). If the process is
convergent, then �x determined by minimizing Eq. (12.110) would be expected to
decrease on successive iterations until (on the final iteration) the linearization is an
extremely good approximation.

Observe that the minimization of Eq. (12.110) is completely analogous to the
previously minimized quadratic form. Thus, any algorithm for solving the least
squares problem directly applies to solving for �x in Eq. (12.110). Therefore, the
corrections is given by

�x D .HTR�1H/�1HTR�1�yc (12.111)
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Fig. 12.8 Nonlinear least squares algorithm

The complete nonlinear least squares algorithm is summarized in Fig. 12.8. An
initial guess xc is required to begin the algorithm. Equation (12.111) is then
calculated using the residual measurements .�yc/, Jacobian matrix .H/, and
measurement covariance matrix (R�1), so that the current estimate can be updated.
A stopping condition with an accuracy dependent tolerance for the minimization of
J is given by

ıJ � jJi � Ji�1j
Ji

<
"

kR�1k (12.112)

where " is a prescribed small value. If Eq. (12.112) is not satisfied, then the update
procedure is iterated with the new estimate as the current estimate until the process
converges, or unsatisfactory convergence progress is evident (e.g. a maximum
allowed number of iterations is exceeded, or J increases on successive iterations).
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Therefore, a linear update is performed. Nonlinear least squares implies that an
fairly accurate estimate of x must be known a priori, which may not always be
possible. Also, a necessary condition for Ox to be the least squares estimate is that
the residual must be orthogonal to the columns of H . This is not true in general.
However, in practice Ox is used to invoke an iterative procedure with xc replaced by Ox
so that the process continues until the estimate is no longer improved. This iterative
search procedure is known as the Gauss method. The estimate covariance is still
given by Eq. (12.102), but is theoretically evaluated at the truth. Since this is not
known, the final estimate is used in practice.

Example 12.4. In this example nonlinear least squares is used to compute the
modified Rodrigues parameters (MRPs) from two vector observations. The true
body vectors are given by

btrue
1 D

2
4
0

0

1

3
5 ; btrue

2 D
2
4

0

0:1p
1 � 0:12

3
5

Note that the angle between these vectors is 5:74ı. The true MRP and associated
attitude matrix are given by

ptrue D

2
664

1

1Cp2
0

0

3
775 ; A.ptrue/ D

2
4
1 0 0

0 0 1

0 �1 0

3
5

The reference vectors are computed using ri D AT btrue
i for i D 1; 2. To generate

body measurements the QUEST measurement model in Eq. (5.107b) is used with
�bi D 0:001ı for i D 1; 2. Note that the measurement covariance is fully populated.
To overcome the issue of generating synthetic noise with correlations in any general
semi-definite covariance matrix R, we first will diagonalize this matrix using an
eigenvalue/eigenvector decomposition:

R D V %V T

where V is a matrix of eigenvectors and % is a matrix of eigenvalues. Since R
is positive semi-definite, then V is an orthogonal matrix and the elements of %
are real and positive. A random sample, denoted by z, using scalar sampling can
be generated using the matrix %, where the elements of % are the variances of the
elements of z. To determine the correlated measurement noise, we simply rotate
the vector z using V with

v D V z
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where v is the correlated noise associated with R. To see that this is correct, we
compute E

˚
v vT

� D VE ˚z zT
�
V T D V %V T D R. This process is done on both

Rb1 and Rb2 to generate synthetic v1 and v2 vectors. The measured body vectors are
then given by

b1 D btrue
1 C v1

jjbtrue
1 C v1jj ; b2 D btrue

2 C v2
jjbtrue

2 C v2jj
To compute the matrixH a first-order expansion of the attitude matrix in the error

MRPs is used. First the true attitude is related to the estimated attitude, denoted by
A. Op/, by using an error attitude, denoted A.ıp/, through

A.ptrue/ D A.ıp/A. Op/

The first-order expansion of A.ıp/ is given by

A.ıp/ D I3 � 4Œıp��

The estimated i th body vector is given by Obi D A. Op/ri . Computing�bi � btrue
i � Obi

gives

�bi D �4Œıp��A. Op/ri
D 4ŒA. Op/ri��ıp

Taking the derivative with respect to ıp gives the following H matrix:

H D
2
4
4ŒA. Op/r1��

4ŒA. Op/r2��

3
5

The vector �y and matrix R are given by

�y D
"

b1 � Ob1
b2 � Ob2

#
; R D �2I6

Equation (12.111) can now be used to perform the nonlinear least squares iterations.
A multiplicative correction using Eq. (2.150) is used to update the MRP:

Op D
�
1 � kpck2

	
�xC �1 � k�xk2	pc � 2�x � pc

1C kpck2k�pck2 � 2�x � pc (12.113)

where Op is the estimated MRP and pc is the initial MRP.
The nonlinear least squares process is started with an initial MRP of pc D 03�1.

The stopping criterion is given when �x < 1 � 10�9. One thousand Monte Carlo
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Fig. 12.9 Attitude errors

runs are executed. In each run the nonlinear least squares process converges in
exactly 5 iterations. This is rather remarkable considering the large error in the initial
estimate! The MRP errors are also computed using Eq. (2.150). The inverse MRP is
given by its negative. Thus, ıp is given by

ıp D
�
1 � kOpk2	 ptrue � �1 � kptruek2	 OpC 2ptrue � Op

1C kOpk2kptruek2 C 2ptrue � Op
The attitude errors are computed by multiplying ıp by 4. Note that covariance of
the attitude errors, 16 �2.HTH/�1, evaluated at the true values, is equivalent to
Eq. (5.113). A plot of the attitude errors along with their respective 3� bounds is
shown in Fig. 12.9. This indicates that the nonlinear least squares approach provides
good estimates. Also, note that the yaw errors are an order of magnitude larger than
the roll and pitch errors. This is due to the small angle between the two body vectors.

Nonlinear least squares may not be suitable to locate the optimum estimate
since convergence is not guaranteed unless the a priori estimate is close to the
optimum value. The gradient search method [22, 26] overcomes this difficulty by
adjusting the estimate so that the search direction is always along the negative
gradient of J.Ox/. However, this method has been known to converge slowly as
the solution approaches the minimum J.Ox/. The Levenberg-Marquardt algorithm
[16] overcomes both the difficulties of the standard differential correction approach
when an accurate initial estimate is not given, and the slow convergence problems
of the method of steepest descent when the solution is close to minimizing the
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nonlinear least squares loss function in Eq. (12.104). This algorithm performs an
optimum interpolation between the differential correction, which uses a Taylor
series expansion, and the gradient method.

In the Levenberg-Marquardt algorithm, Eq. (12.111) is modified so that the
iteration equation is given by

�x D �HTR�1H C �R
��1

HTR�1�yc (12.114)

where � is a scaling factor and R is a diagonal matrix with entries given by the
diagonal elements of HTR�1H . By using the algorithm in Eq. (12.114) the search
direction is actually intermediate between the steepest descent and the differential
correction direction. As � ! 0, Eq. (12.114) is equivalent to the differential
correction method; however, as � ! 1 Eq. (12.114) reduces to a steepest descent
search along the negative gradient of J .

12.3.6 Advantages and Disadvantages

Linear batch estimators are simple to design and implement provided that the system
can be represented accurately using linear observation models. A major advantage
of the linear batch estimator is that the error covariance can be found without using
actual observations. A disadvantage of batch estimators is that the n � n matrix,
which must be inverted, may be ill-conditioned. This problem occurs frequently
when the observability of the system is low. This problem can be alleviated by using
matrix square-root or factorization methods, such as a Cholesky decomposition
which factors a symmetric matrix into the product of a lower triangular matrix and
its transpose. Also, a large number of observations may be required to improve
the accuracy of the estimate, which may substantially increase computer storage.
Sequential estimators have certain advantages since the inverse of an n � n matrix
can be reduced to a scalar inverse, and since the estimate is found sequentially
computer storage can be kept to a minimum. However, convergence of sequential
methods cannot always be guaranteed (especially for bad initialization parameters),
and erroneous observations cannot easily be disregarded.

12.3.7 State Estimation Techniques

The least-square methods shown previously apply to “static” estimation problems.
When an estimate of a varying state is required, “dynamic” methods must be used.
The most common technique for state estimation using dynamic models is the
Kalman filter [11]. The term “filter” is used since it not only estimates dynamic
states, but filters noisy processes. The Kalman filter is a sequential process, but
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can also estimate for constant variables as least-squares methods do. However,
the essential feature of the Kalman filter is the utilization of state models for
dynamic propagation. In addition, the Kalman filter compensates for dynamic model
inaccuracy by incorporating a noise term (commonly known as process noise), that
gives the filter a fading memory. So, each observation has a gradually diminishing
effect on future state estimates.

The Kalman filter satisfies an optimality criterion which minimizes the trace
of the covariance of the estimate error between the state estimates and true
state quantities. Statistical properties of the process noise and measurement error
are used to design an optimal filter. This section introduces the fundamental
equations used in a Kalman filter. The linear Kalman filter is first shown in order
to introduce the fundamental concepts. The steady-state case is also shown for
autonomous system models. The more useful formulation for attitude and orbit
estimation is the nonlinear Kalman filter (also known as the extended Kalman filter),
which incorporates nonlinear dynamic and/or observation models. Divergence and
practical considerations are also discussed.

12.3.7.1 Linear Kalman Filter

The linear Kalman filter development begins by assuming a truth model using the
linear dynamic model in Eq. (12.18) appended with a noise term, given by

Pxtrue D F xtrue C BuCGw (12.115)

where w is a zero-mean p � 1 Gaussian white-noise process vector with spectral
density Q, and G is an n � p process noise distribution matrix. If we ignore the
measurement for now, then the “propagated” estimated state, Ox, follows

POx D F OxC Bu (12.116)

Next, a residual error is defined between the true state in Eq. (12.115) and the
estimated state in Eq. (12.116):

� � xtrue � Ox (12.117)

Taking the time derivative of Eq. (12.117) leads to

P� D F �CGw (12.118)

The covariance of the residual error:

P � Ef��T g (12.119)
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obeys the equation4

PP D Ef� P�T g CEfP��T g D F P C P F T CGQGT (12.120)

which is solved for P.t/ with initial condition P.t0/ D P0. Equations (12.116)
and (12.120) define the propagated system for the estimated dynamic model and
associated error covariance.

In general the measurements are discrete, which are modeled by

yk D Hkxtrue
k C vk (12.121)

where vk is am�1 zero-mean Gaussian white-noise process vector with covariance
Rk . A discrete “update” equation is required to process the measurements. This is
very similar to the sequential least-squares problem. The linear discrete-time update
equation is given by

OxC
k D Ox�

k CKkŒyk �Hk Ox�
k � (12.122)

where the superscripts � and C denote the discrete times just before and after
a discrete measurement update, respectively, i.e. Ox�

k comes from the propagated
estimate using Eq. (12.116). Also, the subscript k denotes the variable at time tk .
The updated covariance expression is given by computing

PC
k � E

n�
xtrue
k � OxC

k

	 �
xtrue
k � OxC

k

	T o
(12.123)

Substituting Eqs. (12.121) and (12.122) into (12.123), and performing this expecta-
tion leads to

PC
k D ŒI �KkHk�P

�
k ŒI �KkHk�

T CKkRkK
T
k (12.124)

where P�
k is given from the propagated system by Eq. (12.120). Note that

Eq. (12.124) is valid for any gain Kk . Also note that it is equivalent to Eq. (12.91),
except that the propagated P�

k is used. The optimal gain is determined by
minimizing the trace of the updated covariance:

Jk D trPC
k (12.125)

Performing this minimization leads to a gain that is identical to the sequential least-
squares problem:

Kk D P�
k H

T
k ŒHkP

�
k H

T
k CRk��1 (12.126)

4This follows formally from Ef�wT g D 1
2
GQ, but there are more rigorous derivations [4].
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Table 12.1 Continuous-discrete linear Kalman filter

Model Pxtrue D F xtrue C Bu CGw; where w 	 N.0;Q/
yk D Hxtrue

k C vk; where vk 	 N.0; Rk/

Initialize Ox.t0/ D Ox0
P.t0/ D P0

Propagation POx D F Ox C Bu

PP D F P C P F T CGQGT

Gain Kk D P�

k H
T
k ŒHkP

�

k H
T
k CRk�

�1

Update OxC

k D Ox�

k CKkŒyk �Hk Ox�

k �

P
C

k D ŒI �KkHk�P
�

k

Substituting Eq. (12.126) into Eq. (12.124) gives

PC
k D ŒI �KkHk�P

�
k (12.127)

This the preferred form for the covariance update, but the Joseph form in
Eq. (12.124) can still be used with the gain in Eq. (12.126) when numerical
instabilities are a concern.

A summary of the continuous-discrete linear Kalman filter is shown in
Table 12.1, where N.0;Q/ denotes a Gaussian distribution with zero mean and
spectral density Q for continuous-time systems, and N.0; Rk/ denotes a Gaussian
distribution with zero mean and covariance Rk for discrete-time systems. The filter
is first initialized using knowledge of the initial state, Ox0, and error covariance, P0.
Then the state and error covariance are updated using the measured observation.
Finally, the state dynamic model and associated error covariance are propagated
using the updated values to the next discrete measurement time.

The Kalman filter shown in Table 12.1 can be used with time-varying model
matrices. However, if the model is autonomous a steady-state expression for the
error covariance can be used. This is due to the fact that the covariance usually
converges rapidly for this case. Also, for a large class of problems the discrete-time
version of the dynamic model in Eq. (12.115) is usually quite adequate, given by

xtrue
kC1 D ˚kxtrue

k C �kuk C $kwk (12.128)

where wk is a p � 1 zero-mean Gaussian white-noise process vector with covari-
ance Qk . The propagation estimate is simply given by

Ox�
kC1 D ˚k OxC

k C �kuk (12.129)

Combining (12.129) with (12.122) gives, for the post-update state estimates,

OxkC1 D ˚k Oxk C �kuk CKkC1ŒykC1 �HkC1.˚k Oxk C �kuk/� (12.130)
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where the superscript C on the state estimates is understood. The pre-update
covariance is needed to compute the Kalman gain. The discrete-time covariance
propagation is given by [13]

P�
kC1 D ˚kPC

k ˚
T
k C $kQk$

T
k (12.131)

Combining the discrete error covariance propagation (12.131) and update equa-
tion (12.127) gives

PkC1 D ˚kPk˚T
k � ˚kPkHT

k ŒHkPkH
T
k CR��1HkPk˚

T
k C $kQk$

T
k (12.132)

where the superscript � on the covariances is understood. If the system is
autonomous, then the following steady-state equation can be used to find P :

P D ˚P˚T � ˚PHT ŒHPHT CR��1HP˚T C $Q$ T (12.133)

which is known as the discrete algebraic Riccati equation. The solution to
Eq. (12.133) is given by forming a 2n � 2n Hamiltonian matrix

H �
�

˚�T ˚�THTR�1H
$ Q$ T˚�T ˚ C $ Q$ T˚�THTR�1H

�
(12.134)

which can be shown to have n stable eigenvalues (inside the unit circle) and
n reciprocal unstable eigenvalues [4]. The eigenvectors of Eq. (12.134) are then
partitioned into n � n submatrices:

V D
�
V11 V12
V21 V22

�
(12.135)

where V11 and V21 contain the eigenvectors corresponding to the unstable eigen-
values, and V12 and V22 contain the eigenvectors corresponding to the stable
eigenvalues. The steady-state solution for P is found by using V11 and V21

P D V21V �1
11 (12.136)

Therefore, the gain in Eq. (12.126) is now constant. Other efficient methods for the
solution of the Eq. (12.133) are shown in [1]. The steady-state discrete-time Kalman
filter is summarized in Table 12.2.

12.3.7.2 Extended Kalman Filter

A large class of orbit and attitude estimation problems involve nonlinear models.
For several reasons, state estimation for nonlinear systems is considerably more



12.3 Estimation Theory 467

Table 12.2 Discrete and autonomous linear Kalman filter

Model xtrue
kC1 D ˚xtrue

k C � uk C $wk; where wk 	 N.0;Q/

yk D Hxtrue
k C vk; where vk 	 N.0; R/

Initialize Ox.t0/ D Ox0
Covariance P D ˚P˚T � ˚PHT ŒHPHT CR��1HP˚T C $Q$ T

Gain K D PHT ŒHPHT CR��1

Estimate OxkC1 D ˚ Oxk C � uk CKŒykC1 �H.˚ Oxk C � uk/�

Table 12.3
Continuous-discrete extended
Kalman filter

Model Pxtrue D f.xtrue;u;w; t /; where w 	 N.0;Q/
yk D h.xtrue

k /C vk; where vk 	 N.0; Rk/

Initialize Ox.t0/ D Ox0
P.t0/ D P0

Propagation POx D f.Ox;u; t /
PP D F P C P F T CGQGT

F � @f
@x

ˇ̌
ˇ̌
Ox
; G � @f

@w

ˇ̌
ˇ̌
Ox

Gain Kk D P�

k H
T
k ŒHkP

�

k H
T
k CRk�

�1

Hk � @h
@x

ˇ̌
ˇ̌
Ox�

k

Update OxC

k D Ox�

k CKkŒyk � h.Ox�

k /�

P
C

k D ŒI �KkHk�P
�

k

difficult, and admits a wider variety of solutions than the linear problem [8]. Some
of these problems are seen by considering the general nonlinear system model

Pxtrue D f.xtrue;u;w; t / (12.137)

Clearly, the probability density function of w is altered as it is transmitted through
the nonlinear elements. So, if the noise term cannot be linearly separated from this
equation, then the simple covariance expression in Eq. (12.137) cannot be used,
since a Gaussian input causes a non-Gaussian response. Fortunately, a Kalman filter
can still be derived using nonlinear models. The extended Kalman filter, though not
precisely “optimum,” has been successfully applied to many nonlinear systems over
the past many years. The fundamental concept of this filter involves the notion that
the true state is sufficiently close to the estimated state. Therefore, the error dynam-
ics can be represented fairly accurately by a linearized first-order Taylor series
expansion, given by Eq. (12.30). The extended Kalman filter uses the full nonlinear
dynamic equation for model propagation, but uses the same linear correction as the
linear Kalman filter. Also, the nominal values are replaced by the current estimates
in the filter propagation. This allows the extended Kalman filter to compute the gain
matrix online, as opposed to pre-computing a gain matrix sequence. A summary of
the extended Kalman filter algorithm is shown in Table 12.3.
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12.3.7.3 Smoothing

A batch version of both the linear and extended Kalman filters is useful for
significantly smoothing noisy processes. Smoothing problems general fall into
three cases. The fixed-point smoother seeks an estimate at a single fixed point
in time, while the observations continue ahead of the estimation. The fixed-lag
smoother seeks an estimate at a fixed length of time back in the past. The fixed-
interval smoother uses a fixed time interval of observations, and seeks estimates at
some or all of the interior points. This is the most common smoother for batch
estimation. An example of such a smoother is the Rauch-Tung-Striebel (RTS)
optimal smoother [23]. This smoother essentially processes the observation first
forward in time and then backwards in time. The forward estimates are given by
the Kalman filter. The backwards process is initialized using the final time forward
estimates:

OxsN D OxC
N (12.138a)

PsN D PC
N (12.138b)

where the subscript s denotes the smoothed quantity. The RTS smoothed estimates
and covariance are computed using

Kk � PC
k ˚

T
k .P

�
kC1/�1 (12.139a)

Oxsk D OxC
k CKk.OxskC1

� Ox�
kC1/ (12.139b)

Psk D PC
k �Kk.P

�
kC1 � PskC1

/K T
k (12.139c)

Note that storage of the forward estimates, state matrices, and covariance is required,
but storage of the measurements is not required. The advantages of smoothing
algorithms is that the resulting error covariance is always less than either the forward
or backward process alone. However, smoothing algorithms cannot be implemented
for realtime application.

12.3.7.4 Stability and Performance

The linear and autonomous Kalman filter is known to be extremely stable (i.e. the
estimates will not diverge from the true values), and provides accurate estimates
under the properly defined conditions. However, the stability of the extended
Kalman filter must be properly addressed before on-board implementation. Many
factors affect filter stability for this case. One common problem is in the error
covariance update and propagation, which may become non-positive definite chiefly
due to numerical instabilities. A measure of the potential for difficulty in an
ill-conditioned matrix can be found by using the condition number [27]. This
problem may be overcome by using the Joseph form (shown previously) or by
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using matrix square root or factorization methods. Square root methods guarantee
positive definiteness, but typically require 50–150 % more computational time than
that required by the standard Kalman filter [27]. A more efficient algorithm is given
by the U-D filter, which factors the covariance matrix using

P D U DUT D �U D1=2
� �
U D1=2

�T
(12.140)

where U is an upper triangular matrix and D is diagonal. The gain matrix,
covariance propagation and update are given in terms of these matrices [2].

For filter performance, non-Gaussian measurement and process noise errors are
a major source of concern. Typically, in most real-world applications these error
sources are indeed non-Gaussian. For example, consider the problem of estimating a
spacecraft’s attitude using magnetometer data. Flight data results have clearly shown
that the magnetic field measurements contain errors which are a function of orbit
rate and higher harmonics [24]. This can severely degrade the filter’s performance,
since this is typically assumed to be modeled by a Gaussian process. A possible
solution to these type of problems involves using a colored-noise filter [13], which
pre-filters (shapes) a Gaussian noise process to more accurately model actual
measurement error processes. However, even if the Gaussian noise assumption is
true, the proper values for the process and measurement covariances may not be
straightforward to choose. This leads to a process known as filter tuning, which
involves adjusting the filter parameters to achieve the best possible estimation
performance, most often using actual measured observations. Filter tuning can be
performed off-line using numerical optimization techniques [22] or online using
adaptive methods [10]. However, in practice manual optimization is more prevalent.
A common procedure involves choosing small values for the measurement error
covariance (which puts more weight or reliance on the measurements) and then
adjusting the process noise covariance and initial covariance to achieve a reasonable
performance level. Then, the tuning process is refined until the desired performance
is achieved.

There are many other concerns to consider in the design and implementation of a
Kalman filter. For an extended Kalman filter the obvious question is: how accurate is
the linearized model? This is an aspect which must be addressed in order to design
an accurate filter. For example, the quaternion kinematic model loses normalization
in a straightforward linearization. Therefore, the physical nature of the model can
be lost. Also, the observability may vary from one time step to the next. This must
be addressed in order to check that observability can be obtained throughout the
orbit. If the Kalman filter is used in conjunction with a control system, then the
filter’s convergence rate (i.e. when transients decay) can significantly affect the
control system’s performance. This is usually accounted for during the initialization
procedure; however, the filter may lose “lock” during mission mode and may need
proper initialization before the control system is again invoked. All or part of these
factors need to be accounted early in the design (before actual operation) in order to
reduce risk of failures due to inadequate filter performance.
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12.3.8 Linear Covariance Analysis

Soon after the development of the Kalman filter, it was recognized that the
covariance matrix can be computed without processing actual data, and that the
resulting covariance is very useful for assessing the expected estimation errors
resulting from candidate dynamic models and measurement strategies [6, 10].
This is the basic idea of linear covariance analysis, which executes only the
covariance initialization, covariance propagation, gain computation, and covariance
update steps of Table 12.1. It has been widely employed during the development
of attitude estimation systems, to determine the type of sensors required, their
locations, accuracy, and required data frequency, as well as the refinement required
of dynamic models.

The number of parameters describing a dynamical system can be quite large, and
it is often impractical to solve for all of them, especially in real-time applications.
Thus it can be important to consider the effect on estimation accuracy of errors
in parameters that are unknown but not solved for. Reference [15] considers the
generalization of linear covariance analysis to include such consider parameters,
including references to the earlier literature.

If the models are state-dependent, as is usually the case, a nominal state trajectory
is specified to evaluate the partial derivative matrices F � @f=@x, G � @f=@w, and
Hk � @h=@x. In most cases, the nominal trajectory is also required to account for
sensor occultation, star availability for star cameras, spacecraft attitude maneuvers,
and similar effects. Note that, unlike the EKF, the nominal state trajectory is
specified at the outset of the analysis and is not affected by the filter equations.

12.3.9 Separation Theorem

Oftentimes a full-state controller is used in the controller. However, just as often
all states in a system cannot be measured from sensors. Thus, an estimator is used
in concert with a controller, which provides the full state information required in
the controller. For example, in the inverted pendulum derived at the beginning of
this chapter only measurements of position and angle may be provided, and these
along with their derivatives are estimated by the Kalman filter to provide full state
knowledge to a controller. A natural question arises: how does the dynamics of
either the controller or the estimator affect the dynamics of the overall (combined)
controller/estimator system?

First, a description of the closed-loop system is provided. Here only linear and
autonomous systems are considered. Also, only the regulation case is considered
where the goal is to drive the true states to zero. A controller with full state feedback
is given by u D �Lxtrue, where L is a constant gain. Substituting this expression
into Eq. (12.21) with the definition xtrue � x gives

Pxtrue D .F � BL/xtrue (12.141)
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The closed-loop controller dynamics are given by eigenvalues of .F � BL/. The
control gain, L, is chosen to give some desired closed-loop response. Now consider
the continuous-time version of the Kalman filter estimate equation, given by

POx D F OxCK.y �H Ox/ (12.142)

Assuming no noise on y, so that y D Hxtrue, then the error dynamics of the
estimator, defined by Eq. (12.117), are given by

P� D .F �KH/� (12.143)

The error dynamics of the estimator are given by eigenvalues of F�KH . In practice
the control input uses the estimated states, with

u D �LOx (12.144)

Substituting Ox D xtrue � � into (12.144), and then substituting the resultant into
Eq. (12.21) leads to

Pxtrue D .F � BL/xtrue C BL� (12.145)

Hence, the closed-loop dynamics of the overall controller/estimator system are
given by

�Pxtrue

P�
�
D
�
F � BL BL

0n�n F �KH
� �

xtrue

�

�
(12.146)

Since the matrix in Eq. (12.146) is block-triangular, its eigenvalues are given by the
eigenvalues of F�BL and F�KH . This shows that the overall controller/estimator
system can be designed by separating the estimator from the controller, which is
exactly the separation theorem. A block diagram of the overall controller/estimator
system is shown in Fig. 12.10.

Example 12.5. In this example a linear Kalman filter is used to estimate for the
states of the inverted pendulum. A full state controller is then used to bring the
pendulum to its zero (vertical) position. The following parameters are used for the
model: M D 2 kg, m D 0:1 kg, ` D 0:1 m, and c D 2 Ns/m. Note that this
system is unstable. The continuous-time system is converted to discrete-time using
a sampling interval of 0:01 s. The discrete-time system matrices are given by

˚ D

2
664

1 �3:8687 � 10�2 9:9485 � 10�3 �1:2597 � 10�4
0 1:3910 3:9241 � 10�4 1:1273 � 10�2
0 �8:1945 9:8924 � 10�1 �3:8687 � 10�2
0 82:860 8:3117 � 10�2 1:3910

3
775
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Fig. 12.10 Overall controller/estimator system

� D

2
664

2:5761 � 10�5
�1:9620 � 10�4
5:3794 � 10�3
�4:1558 � 10�2

3
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The true and estimated initial states and the initial covariance are given by

xtrue.t0/ D Ox.t0/ D
�
0 .10=180/ 0 0

�T

P0 D

2
664

.1 � 10�4/2 0 0 0

0 .0:15=180/2 0 0

0 0 0:12 0

0 0 0 .0:1=180/2

3
775

The estimated initial and true states are equal, which is generally not true in practice.
It is assumed here that the filter has converged before the controller is enabled
so that the estimated states will be close to their respective true states and small
values in P0 are appropriate. The outputs are position and angle. Measurements are
generated using a zero-mean Gaussian white-noise process with standard deviations
of 0:001 m for position and 0:001=180 rad for the angle. The state matrices for
the estimate are the same as the truth so no process noise is required. The Kalman
filter provides estimates for position, velocity, angle, and angular rate for use in the
controller.

The controller is given by uk D �LOxk . The control gain, L, is chosen to stabilize
the system within 1 s. This is achieved by:

L D ��8:2701 �2:1249 � 103 �5:3521 �18:386�



References 473

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5

10

A
ng

le
 (

D
eg

)

Time (Sec)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.1

0

0.1

0.2

0.3

0.4

0.5

P
os

it
io

n 
(m

)

Time (Sec)

a b

Fig. 12.11 Controlled response of the inverted pendulum. (a) Angle. (b) Position

Figure 12.11a shows a plot of the controlled pendulum angle response. The angle
starts at 10ı and then swings to the other side, finally coming to a near resting point
of zero. Small oscillations are present at steady state, which are due to the noise
in the state estimates. A plot of the controlled cart position response is shown in
Fig. 12.11b. The cart starts at its initial resting point of zero and then returns to that
same point once the pendulum is stabilized.
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Appendix: Computer Software

All of the examples shown in the text have been programmed and simulated using
MATLAB R
. A website of these programs, listed by chapter, can be found at

http://www.buffalo.edu/~johnc/space_book.htm

For general information regarding MATLAB or related products, please consult
MathWorks, Inc. at

http://www.mathworks.com

It has been our experience that to thoroughly understand the intricacies of a
subject matter in this text, one must learn from basic fundamentals first. Although
computer routines can provide some insights to the subject, we feel that they may
hinder rigorous theoretical studies that are required to properly comprehend the
material. Therefore, we strongly encourage students to program their own computer
routines, using the codes provided from the website for verification purposes only.
We have decided not to include a disk of programs with the text so that up-to-date
versions of the computer programs can be maintained on the website. The programs
have been written so that anyone with even a terse background in MATLAB should
be able to comprehend the relationships between the examples in the text and the
coded scripts. We hope that the reader will use these programs in the spirit that they
are given; to supplement their reading and understanding of the material in printed
text in order to bridge the gap between theoretical studies and practical applications.

Limit of Liability/Disclaimer of Warranty: The computer programs are provided
as a service to readers. While the authors have used their best efforts in preparing
these programs, they make no representation or warranties with respect to the
accuracy or completeness of the programs. The book publisher (Springer), the
authors, the authors’ employers, or MathWorks, Inc. shall not be liable for any loss
of profit or any other commercial or noncommercial damages, including, but not
limited to, special, incidental, consequential, or other damages.

F.L. Markley and J.L. Crassidis, Fundamentals of Spacecraft Attitude Determination
and Control, Space Technology Library 33, DOI 10.1007/978-1-4939-0802-8,
© Springer Science+Business Media New York 2014
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